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Abstract—The fast development of P4-based programmable
data plane (PDP) has motivated the offloading of service function
chains (SFCs) to switches. To adapt to dynamic service demands,
PDP switches will need to be reprogrammed occasionally to
update their packet processing pipelines, especially for stateful S-
FCs. In this work, we propose a novel stateful SFC recompilation
system, namely, MrgRecmp4. It jointly considers the existing and
new SFCs to optimize the P4 program recompilation for deploy-
ing new SFCs as reconstructed pipelines, such that the complexity
of SFC reconfiguration can be minimized together with the
hardware resource utilization in PDP switches. We first lay out
the system design of MrgRecmp4, and explain how to leverage a
flexible and fine-grained table merging scheme to optimize the P4
programs of stateful SFCs. Then, we formulate a bi-level integer
linear programming (BILP) model to accomplish network-wide
optimization for MrgRecmp4, which jointly considers the existing
and new SFCs in a PDP network to determine the PDP switches
that need to be reprogrammed and to generate reconstructed
pipelines for them with table merging. We also propose a sliding-
window-based heuristic to solve the network-wide optimization
quickly. Both simulations and real-world experiments confirm
that MrgRecmp4 outperforms existing benchmarks.

Index Terms—Service function chains, Recompilation, Pro-
grammable data plane, Table merging, Bi-level optimization.

I. INTRODUCTION

Nowadays, network innovations are developing fast in the
Internet, especially for the metro and backbone segments [1–
7]. Meanwhile, it is popular for service providers to instantiate
virtual network functions (vNFs) on general-purpose software
and hardware platforms and arrange them as service function
chains (SFCs) for various network services [8]. This motivates
researchers to offload SFCs to P4-based programmable data
plane (PDP) switches (e.g., those based on Tofino ASICs [9]),
to explore their line-speed packet processing at 100 Gbps or
beyond and hop latency at the sub-microsecond level [10].
However, certain hardware restrictions make it difficult for
PDP switches to accommodate dynamic service demands.
Specifically, the challenges of supporting reconfigurable SFCs
with hardware PDP switches lie in the limitations of hardware
resources, the support of stateful packet processing, and the
complexity and overhead of pipeline reconfiguration.

A packet processing pipeline of Tofino-based PDP switches
includes a limited number of stages, each of which contains
restricted sizes of SRAM, TCAM, hash bits, etc. These
limitations restrict the number of flow entries and the com-
plexity of logic that can be implemented for SFCs. Also,
if there are dependencies between two vNFs, they can only

be realized across multiple stages, further degrading resource
efficiency. Although people have proposed a few table merging
techniques to offload SFCs with improved resource utilization
[11, 12], they only tried to merge identical match-action tables
(MATs), which have very limited application scope given the
diversity of services and user flows across SFCs. Moreover,
the SFC deployment with simple table merging can hardly
cope with stateful SFCs, which becomes increasingly popular
recently [13–17]. For instance, as Tofino ASIC only supports
no more than two conditional statements in the register action,
it cannot fully realize stateful SFCs like TCP firewall and thus
has to rely on the control plane for state updates [18, 19], while
since stateful vNFs such as heavy hitter and stateful load-
balancer consume a lot of memory resources, offloading them
to a PDP switch can only process a limited number of flows.
Therefore, it is challenging to offload stateful SFCs to PDP
switches with high resource efficiency and good performance.

To adapt to dynamic service demands, we need to reconfig-
ure SFCs. This brings another major challenge to offloading
SFCs to PDP switches, because their resources restrict the
number of vNF types that can be pre-deployed. Hence, repro-
gramming PDP switches becomes inevitable when new types
of vNFs are requested or SFCs need to be redeployed to re-
optimize network resource usage and quality-of-service (QoS)
[20]. However, to the best of our knowledge, existing studies
have not tried to optimize the P4 program recompilation
for deploying new stateful SFCs as reconstructed pipelines.
Such an optimization is relevant, because without it, we can-
not deploy sufficient stateful vNFs after each recompilation,
leading to reprogramming PDP switches more frequently and
thus more service interruptions. Meanwhile, the optimization
is challenging for the following reasons. First, we need to
develop a way to compile the P4 programs of existing and new
stateful SFCs. Here, a fine-grained and accurate abstraction
of the hardware resources in PDP switches is necessary to
analyze P4 programs of stateful SFCs to achieve resource-
efficient table merging in advance. Second, we need to jointly
optimize the QoS of existing and new stateful SFCs.

In this work, we propose a novel stateful SFC recompilation
system, namely, MrgRecmp4. It jointly considers existing and
new SFCs to optimize the P4 program recompilation for
deploying new SFCs as reconstructed pipelines, such that the
complexity of SFC reconfiguration can be minimized together
with the hardware resource utilization in PDP switches. We
first design the system of MrgRecmp4, and explain how to



leverage flexible and fine-grained table merging to optimize
the P4 programs of stateful SFCs. Then, we formulate a bi-
level integer linear programming (BILP) model to accom-
plish network-wide1 optimization for MrgRecmp4. A sliding-
window-based heuristic is also proposed to solve the opti-
mization quickly. Both simulations and real-world experiments
confirm that MrgRecmp4 outperforms existing benchmarks.

The rest of the paper is organized as follows. In Section
II, we describe the fine-grained table merging strategy and
dynamic deployment mechanism for stateful SFCs, which is
the basis of MrgRecmp4. Section III explains the network-
wide optimization for MrgRecmp4, formulates it as a BILP
model, and designs a sliding-window-based heuristic to solve
the problem quickly. The performance evaluations with nu-
merical simulations and real-world experiments are discussed
in Section IV. Finally, Sections V and VI summarize recent
related work and the paper, respectively.
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Fig. 1. General processing paradigm for stateful vNFs in PDP switch.

II. OPERATION PRINCIPLE

In this section, we explain the operation principle that
MrgRecomp4 uses to optimize the P4 programs of stateful
SFCs for recompilation, which is basis of MrgRecomp4.

A. Fine-Grained Table Merging for Stateful vNFs

We first introduce the state machine abstraction and fine-
grained table merging for stateful vNFs. As there can be many
types of stateful vNFs, we need to find a common paradigm
to abstract their core parts. As shown in Fig. 1, a stateful vNF
can be abstracted to a state machine composed of two MATs,
i.e., a state transition module (ST-M) and an action module (A-
M). In certain stateful vNFs, there can also be preprocessing
modules (P-M) (e.g., hash operations), which convert packet
fields into that required by subsequent ST-M and A-M. When a
packet enters a stateful vNF, it first passes through the ST-M,
which obtains the current state (can be per-flow state, per-
packet state and link state) based on perceived internal events
(determined by the pipeline) or external events (instructed by
the control plane) and store the state information in registers.
Next, the packet is processed by the A-M, matching to its
fields and current state for corresponding actions.

Fig. 2 explains how we merge state machines in a fine-
grained manner after abstracting stateful vNFs, with three table
merging strategies [21, 22]. The first one is the exact merge for

1Here, “network-wide" means that our optimization spans the entire net-
work, addressing all the PDP switches in it rather than only focusing on one.
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Fig. 2. Examples on fine-grained table merging.

merging two identical MATs. The second one, namely, same
action merge, merges two A-Ms in different stateful vNFs if
they contain same actions. Specifically, the match items can be
merged by setting the A-Ms to use a match bitmap that covers
all the match items, as shown in Fig. 2(a). Finally, the third
one addresses identical match items in two MATs (i.e., same
match merge), as shown in Fig. 2(b), and it can be used to save
the hardware resources spent on frequently-used match items
(such as five-tuples). These three table merging strategies are
the basic operations used in our stateful SFC recompilation.

B. SFC Isolation and Runtime Dynamic Deployment
As stateful SFC recompilation will bring PDP switch(es)

offline and cause service interruptions, it is desired to have
certain flexibility for dynamic SFC deployment in runtime
without SFC recompilation. This can be achieved by concate-
nating vNFs to form a superset SFC on each PDP switch (i.e.,
different stateful SFCs can be realized in runtime by letting
packets select vNFs in the superset SFC to pass through).
Meanwhile, the superset SFC should have the ability to isolate
the traffic processing of different SFCs. Fig. 3 provides an
example on this, where we need to provision three SFCs in
runtime. The SFCs contain four types of vNFs, i.e., the stateful
network address translation (NAT), Layer-4 load balancing
(LB), stateful firewall (FW), and heavy hitter detection (HH).
Then, by adding a match item of client flag in each merged
MAT, we can let the superset SFC distinguish the traffic of
the three SFCs. Therefore, a stateful SFC can be deployed in
runtime as long as all of its vNFs can be found in the superset
stateful SFCs pre-deployed in the PDP network.

Nevertheless, even with such flexibility in runtime, PDP
switches might still be reprogrammed occasionally to adapt
to dynamic service demands. Since the QoS demands of
existing and new SFCs should be satisfied after recompilation,
we need to perform network-wide optimization to determine
the PDP switches that need to be reprogrammed and to
generate reconstructed pipelines for them with proper table
merging, such that the complexity of the SFC recompilation is
minimized together with resource utilization in PDP switches.

III. NETWORK-WIDE OPTIMIZATION FOR MRGRECOMP4
In this section, we discuss the algorithm design for the

network-wide optimization in MrgRecomp4.



FWNAT LBR1  FWNAT LBR2  HH FWR3  HH

Register

action

Diff

time

Register

action

packet

count

FW state

TCP flag

Set

state_A

transition table

client 

flag

Set

state_B

HH state table

state_bitmap

client flag
Output

forward table

pktin_bitmap

client flag

Set

digest 

ID

pktin table

5-tuple

client flag

Set

{sIP,dIP}

LB & NAT table

client 

flag

Set

FW state

FW state table

Hash

action
5-tuple Add

action

state

bitmap

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

R1 R2 

R1 R2 R3  

R2 R3  

R1 R2 R3  R1 R2 R3  

Fig. 3. Example on realizing different SFCs with a superset stateful SFC in the pipeline of a PDP switch.
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Fig. 4. Examples on SFC recompilation, (a) original network, (b) simple SFC recompilation, and (c) SFC recompilation from network-wide optimization.

A. Problem Description and Network Model

We assume that the substrate network (SNT) is built with
PDP switches. Fig. 4 explains the stateful SFC recompilation
considered in this work and why network-wide optimization
is needed. The network status before the SFC recompilation
is shown in Fig. 4(a), where there is only one in-service SFC
R1 running over 6→5→4 and three superset SFCs deployed
on Nodes 2, 4, and 5, respectively. R1 uses the superset SFC
on Node 5 to realize its SFC, but we need to change its SFC
to a longer one. Meanwhile, there are three new SFC requests
(i.e., R2-R4) to be deployed in the network. As R1, R3 and
R4 ask for the vNFs that are not included in the deployed
superset SFCs, an SFC recompilation is inevitable.

Fig. 4(b) shows a simple SFC recompilation scheme without
proper network-wide optimization. Here, we assume that the
fine-grained table merging is not used, and thus the hardware
resources on each PDP switch can only accommodate 4 vNFs
at most. R2 can be provisioned with the superset SFC on Node
2 (no SFC recompilation is required). To serve the SFCs of R1,
R3 and R4, we decide to deploy a new superset SFC on Node
3 and recompile the existing superset SFC on Node 4. Then,
two switches need to be reprogrammed. On the other hand,
Fig. 4(c) shows the SFC recompilation scheme obtained by
network-wide optimization. Here, with the fine-grained table
merging and optimization concerning the existing and new
SFCs, we can deploy a longer superset SFC on Node 3 to
satisfy all the missing vNFs in R1, R3 and R4, and only need
to reprogram one PDP switch. Therefore, the network-wide
optimization is necessary to recompile stateful SFCs efficiently
as reconstructed pipelines in the PDP network.

We model the topology of the SNT as G(V,E), where V
and E are the sets of PDP switches and links in it, respectively.

There are S stages in each PDP switch, and based on the
setting of Tofino 1 [9], we set S = 12. As for the memory in
PDP switches, this work only considers SRAM and TCAM, as
they are the bottleneck resources in each stage. The capacity of
SRAM and TCAM in each stage is US and UT , respectively,
and the bandwidth capacity of each link e ∈ E is B. We
denote the set of SFC requests as R, in which each request
Ri corresponds to a set of flows using a same SFC and can
be expressed as Ri(si, di, Ci, bi, fi), where si and di are the
source and destination, Ci is the required SFC with vNFs
{ci,1, · · · , ci,J}, bi is the total bandwidth demand, and fi is
the number of flows, which determines the table size of MATs.

B. BILP Optimization Model

The network-wide optimization in MrgRecomp4 needs to
consider the existing and new SFCs to select PDP switches
to reprogram, generate reconstructed pipelines for them with
table merging, and provision all the SFCs that depend on or
are impacted by SFC recompilation. As it is a fairly complex
problem, we divide it into two steps for being modeled with a
BILP. Specifically, the upper-level model selects proper PDP
switches to reprogram to minimize the complexity of the SFC
recompilation, while the lower-level model accepts feasible
solutions from the upper-level model to determine the provi-
sioning schemes of all the SFCs such that the resource usage
and total end-to-end (E2E) latency of SFCs are minimized.
Table I lists the parameters used in the BILP.

1) Upper-level Optimization: Table II shows the variables
used in the upper-level optimization. Note that, SFC recompi-
lation can move a vNF to a node v that originally carries the
vNF or a node u that only carries the vNF after recompilation.
In the former case, the vNF does not use any additional



TABLE I
PARAMETERS USED IN THE BILP MODEL

M/A Set of match and action types that can be used in MATs.
T Set of vNF types that can be supported in the SNT.
hv1,v2 Hop-count of the shortest path between v1 and v2.
US /UT Capacities of SRAM/TCAM resources in each stage.
uSm/uTm Sizes of SRAM/TCAM used by matches of type m.
uSa /uTa Sizes of SRAM/TCAM used by actions of type a.
uSa,match Size of preset match bitmap for same action merging.
km,ai,j,l Boolean that equals 1 if the l-th MAT in the j-th vNF of

SFC Ri is MAT (m; a), and 0 otherwise.
di,jl1,l2

Boolean that equals 1 if the l2-th MAT in the j-th vNF of
SFC Ri depends on the l1-th MAT, and 0 otherwise.

M A large positive integer introduced for linearization.
µSv,t/µ

T
v,t Sizes of SRAM/TCAM used by a vNF of type t, which has

been deployed on node v ∈ V .
uSt /uTt SRAM/TCAM usages per flow for a vNF of type t, if table

merging is not adopted.
W t
v /W̃ t

v Number of flows that a vNF of type t deployed on node v
can still supported/currently carries.

wti /w
t
v Number of flow entries to be used if deploying a vNF of

type t in request Ri/originally on node v.

resources on node v, but needs to use the flow entries there.
In the latter case, the vNF needs to use additional resources
on node u. Table merging is not considered in the upper-
level optimization and we only output the values of variables
{ov} to the lower-level optimization, because the actual SFC
recompilation scheme and service provisioning scheme of SFC
requests are determined in the lower-level optimization.

TABLE II
VARIABLES USED IN THE UPPER-LEVEL MODEL

ov Boolean variable that equals 1 if node v needs to be recom-
piled, and 0 otherwise.

pold/new
i,t,v Boolean variable that equals 1 if the type-t vNF of a new

request Ri is placed on a node v that originally carries the
vNF/has been recompiled, and 0 otherwise.

qold/new
v1,t,v2

Boolean variable that equals 1 if a type-t vNF is moved from
node v1 to node v2 (node v2 originally carries/does not carry
such a vNF) by the SFC recompilation, and 0 otherwise.

Objective:
The objective of the upper-level optimization is to minimize

the number of flows impacted by the SFC recompilation (i.e.,
minimizing the complexity due to flow migration).

Minimize
∑
v,t

W̃ t
v · ov. (1)

Constraints:
∑
i,t

pnew
i,t,v · uSt · fi +

∑
v1,t

qnew
v1,t,v · µ

S
v1,t ≤ ov · US · S,∑

i,t

pnew
i,t,v · uTt · fi +

∑
v1,t

qnew
v1,t,v · µ

T
v1,t ≤ ov · UT · S,

∀v, {v1 : v1 ∈ V, v1 6= v}.

(2)

Eq. (2) ensures that SRAM/TCAM usages on each recompiled
node v are within their capacities after the SFC recompilation.∑

i

pold
i,t,v ·wti +

∑
v1

qold
v1,t,v ·w

t
v1 ≤ (1−ov) ·W t

v , ∀v, t, v1 6= v. (3)

Eq. (3) ensures that used flow entries in each original vNF on
node v are within their capacity after the SFC recompilation.∑

v

pold
i,t,v + pnew

i,t,v = 1, ∀i, t. (4)

Eq. (4) ensures that each vNF in an SFC request is deployed
on one and only one node.∑

v1

qold
v,t,v1 + qnew

v,t,v1 = ov, ∀v, t, {v1 : v1 ∈ V, v1 6= v}. (5)

Eq. (5) ensures that each original vNF on a recompiled node
is moved to one and only one node.

2) Lower-level Optimization: After getting the nodes that
need to be recompiled, the lower-level model records the SFC
deployment in the remaining nodes as parameters and proceeds
to optimize the actual SFC recompilation and provisioning
schemes of SFC requests. Tables III and IV respectively list the
parameters and variables used in the lower-level optimization.

TABLE III
PARAMETERS USED IN THE LOWER-LEVEL MODEL

Ω Set of nodes that need to be recompiled.
y

pre,v,s
m,a the Boolean parameter that equals 1 if the MAT (m; a) has

been deployed on the s-th stage of node v, and 0 otherwise.
ki,jt Boolean that equals 1 if the j-th vNF in SFC Ri is of type t,

and 0 otherwise.
υv,t Boolean that equals 1 if a vNF of type t has been deployed

on node v, and 0 otherwise.
λv,tm,a Number of remaining flow entries in an MAT (m; a) in the

type-t vNF deployed on node v.

Objective:
The objective of the lower-level optimization is to minimize

the used hardware resources in PDP switches together with the
total hop-count of provisioned SFC requests as

Minimize α ·
∑
v,s

(Cv,sS + Cv,sT ) + (1− α) · L. (6)

where α is the weight to adjust the importance of the two
terms, Cv,sS and Cv,sT are the total sizes of used SRAM and
TCAM in the s-th stage of node v, respectively, and L is the
total hop-count of SFC requests, as

Cv,sS =
∑
m

(∑
a

ηv,sm,a · uSa + uSm

)
·
∑
i

τv,si,m+∑
a

∑
i

τv,si,a · (u
S
a + uSa,match) +

∑
m,a

∑
i

τv,s,4i,m,a ·
(
uSm + uSa

)
,

Cv,sT =
∑
m,a

∑
i

τv,s,4i,m,a ·
(
uTm + uTa

)
,

L =
∑

v1,v2,i,j1,j2

xv1i,j1 · x
v2
i,j2
· hv1,v2 · fi.

(7)
Note that, we define table merging types as χ = {1, 2, 3, 4} to
denote the exact merging, same match merging, same action
merging, and no merging, respectively.

Constraints:
εv,out
i,j,l − ε

v,in
i,j,l ≥ 0,

εv,ini,j,l ≥M · x
v,range
i,j,l ,

εv,out
i,j,l ≥M · x

v,range
i,j,l ,

∀v, i, j, l. (8)



TABLE IV
VARIABLES USED IN THE LOWER-LEVEL MODEL

xv,si,j,l Boolean variable that equals 1 if the l-th MAT of j-th
vNF in Ri is on the s-th stage of node v, and 0 otherwise.

εv,in/out
i,j,l Integer variables that indicate the stage of node v where

the deployment of the l-th MAT of j-th vNF in Ri starts
and ends.

zei Boolean variable that equals 1 if SFC Ri uses link e ∈
E, and 0 otherwise.

x
v,range
i,j,l Boolean variable that equals 1 if the l-th MAT of j-th

vNF of Ri is deployed on node v, and 0 otherwise.
xv,vNF
i,j Boolean variable that equals 1 if the j-th vNF of Ri is

deployed on node v, and 0 otherwise.
yv,sm,a Boolean variable that equals 1 if an MAT (m; a) is

deployed on the s-th stage of node v, and 0 otherwise.
ζv,s,count
m,a Integer variable that indicates the times an MAT (m; a)

being reused on the s-th stage of node v.
ζ/η/θ/δv,sm,a Boolean variables that equal 1 if an MAT (m; a) with

exact/same match/same action/without any merging is on
s-th stage of node v, and 0 otherwise.

βv,sm,a1,a2 Boolean variable that equals 1 if MATs (m; a1) and
(m; a2) are on the s-th stage of node v, and 0 otherwise.

γv,sm1,m2,a Boolean variable that equals 1 if MATs (m1; a) and
(m2; a) are on the s-th stage of node v, and 0 otherwise.

τv,s,χi,m,a Number flows of Ri using MAT (m; a) with type-χ
merging, which is deployed on s-th stage of node v.

τv,s
i,m/a

Numbers of flows of Ri using match item m/action item
a, which is deployed on s-th stage of node v after same
match/same action merging.

ρim,a,χ Boolean variable that equals 1 if MAT (m; a) of Ri uses
type-χ merging strategy, and 0 otherwise.

κvi,j,l Auxiliary variables for linearization.

Eq. (8) ensures the correct mapping relation to deploy each
MAT on a stage of one node.

κvi,j,l ≤ εv,out
i,j,l − ε

v,in
i,j,l + 1,

κvi,j,l ≤ S · xv,range
i,j,l ,

κvi,j,l ≥
(
εv,out
i,j,l − ε

v,in
i,j,l + 1

)
− S

(
1− xv,range

i,j,l

)
,∑

s

xv,si,j,l = κvi,j,l,

∀v, i, j, l. (9)

Eq. (9) ensures the correct relation among the variables related
to deploying MATs.

ζv,s,count
m,a =

∑
i,j,l

xv,si,j,l · k
i,j,l
m,a,

ζv,sm,a ≤
1

2
· ζv,s,count
m,a ,

ζv,sm,a ≥
1

M
·
(
ζv,s,count
m,a − 1

)
,

∀v, s,m, a. (10)

Eq. (10) ensures that the MATs using exact merging are
correctly determined.



βv,sm,a1,a2 ≤
∑
i,j,l

xv,si,j,l · k
i,j,l
m,a1 ,

βv,sm,a1,a2 ≤
∑
i,j,l

xv,si,j,l · k
i,j,l
m,a2 ,

βv,sm,a1,a2 ≥ y
v,s
m,a1 + yv,sm,a2 − 1,

ηv,sm,a1 ≥ β
v,s
m,a1,a2 ,

∀v, s,m, a1, a2, (11)

ηv,sm,a1 ≤
∑
a2

βv,sm,a1,a2 , ∀v, s,m, a1. (12)

Eqs. (11) and (12) ensure that the MATs using same match
merging are correctly determined.

γv,sm1,m2,a ≤
∑
i,j,l

xv,si,j,l · k
i,j,l
m1,a,

γv,sm1,m2,a ≤
∑
i,j,l

xv,si,j,l · k
i,j,l
m2,a,

γv,sm1,m2,a ≥ y
v,s
m1,a + yv,sm2,a − 1,

θv,sm1,a ≥ γ
v,s
m1,m2,a,

∀v, s,m1,m2, a. (13)

θv,sm1,a ≤
∑
m2

γv,sm1,m2,a, ∀v, s,m1, a. (14)

Eqs. (13) and (14) ensure that the MATs using same action
merging are correctly determined.

yv,sm,a ≥ xv,si,j,l · k
i,j,l
m,a, ∀v, s,m, a, i, j, l. (15)

∑
i,j,l

xv,si,j,l · k
i,j,l
m,a ≤ yv,sm,a ·

∑
i,j,l

ki,j,lm,a,

∑
i,j,l

xv,si,j,l · k
i,j,l
m,a ≥

(
yv,sm,a − 1

)
·

1 +
∑
i,j,l

ki,j,lm,a

 ,

∀v, s,m, a.

(16)
Eqs. (15) and (16) ensure the correct relation between the
deployment of each MAT and the deployment of its vNF.

yv,sm,a = ηv,sm,a + ζv,sm,a + θv,sm,a + δv,sm,a, ∀v, s,m, a. (17)

Eq. (17) ensures that an MAT can only use a merging strategy.{
τv,s,1i,m,a ≤ fi · ζ

v,s
m,a, τ

v,s,2
i,m,a ≤ fi · η

v,s
m,a,

τv,s,3i,m,a ≤ fi · θ
v,s
m,a, τ

v,s,4
i,m,a ≤ fi · δ

v,s
m,a,

∀v, s, i,m, a, (18)

∑
j,l

xv,si,j,l · k
i,j,l
m,a ≤

∑
χ

τv,s,χi,m,a, ∀v, s,m, a, (19)

{
τv,s,2i,m,a = τv,si,m,

τv,s,3i,m,a = τv,si,a ,
∀v, s, i,m, a, (20)


∑
v,s

ρim,a,χ · τv,s,χi,m,a = ρim,a,χ · fi,∑
χ

ρim,a,χ = 1,
∀i,m, a. (21)

Eqs. (18)-(21) ensure that for each MAT in SFC Ri, no matter
which merging strategy is used, the number of flows using it
is within the total number of flows fi.

Cv,sS ≤ US , Cv,sT ≤ UT , ∀v, s, (22)

Eqs. (22) ensures that the SRAM/TCAM used in each stage
on a node v do not exceed their capacities in the stage.∑

i

zei · bi ≤ B, ∀e. (23)

Eq. (23) ensures the bandwidth constraint of each link.

εv,out
i,j,l1

≤ εv,ini,j,l2
− di,jl1,l2 ·

(
xv,range
i,j,l1

+ xv,range
i,j,l2

− 1
)
,

∀v, i, j, l1, l2, l1 ≤ l2.
(24)



Eq. (24) ensures that the deployment of MATs on each node
is correctly determined.{
ypre,v,s
m,a ≥ xv,si,j,l · k

i,j,l
m,a −M · (1− xv,vNF

i,j ),

ypre,v,s
m,a ≤ xv,si,j,l · k

i,j,l
m,a +M · (1− xv,vNF

i,j ),
∀v ∈ V \Ω, s, i, j, l,m, a.

(25)
Eq. (25) ensures that for each node v, which is not recompiled,
the value of variable xv,si,j,l is correctly determined based on the
corresponding variable xv,vNF

i,j and parameter ypre,v,s
m,a .∑

i,j

xv,vNF
i,j · ki,jt · fi ≤ λ

v,t
m,a, ∀v ∈ V \ Ω, t,m, a. (26)

Eq. (26) ensures that the number of flows using each MAT on
node v, which is not recompiled, is within the MAT’s capacity.

xv,vNF
i,j · ki,jt ≤ υ

v,t, ∀v ∈ V \ Ω, i, j, t. (27)

Eq. (27) ensures that if the j-th vNF of Ri is on node v, which
is not recompiled, the value of variable xv,vNF

i,j is correctly set.

C. Heuristic Algorithm Design
The time complexity of solving the BILP may challenge

its adaptability to dynamic network operations. Meanwhile,
how to offload SFCs to PDP switches resource-efficiently is
known to be NP-hard [23]. Hence, we design a polynomial-
time heuristic to solve the network-wide optimization quickly.
Similar to the BILP, the heuristic also tackle the problem in
two steps. First, we process the existing and new SFC requests
to find the PDP switches to reprogram, and obtain the SFCs
that need to be reprovisioned or provisioned accordingly. Next,
we design a sliding-window-based algorithm to generate re-
constructed pipelines for the selected PDP switches with fine-
grained table merging, and to serve related SFCs accordingly.

1) Find PDP Switches to Recompile: This step is accom-
plished with two phases. First, we find the SFCs that can be
directly served in the current PDP network by updating table
entries. Second, we update the set of pending SFCs and find
the PDP switches that need to be recompiled to serve them.

The first phase is handled by Algorithm 1, which takes the
set of pending SFC requests R′ as input. Line 1 sorts the SFCs
in R′ to make sure that those with larger resource demands
are served earlier. Then, the Lines 2-11 try to serve each SFC
Ri ∈ R′ in the sorted order with K-shortest-path routing. If
an SFC can be served, that is, all of its vNFs, bandwidth and
number of table entries can be satisfied, we remove it from
R′ and update the network status accordingly (Lines 5-9).

MAT1
MAT2

MAT3

MAT4

PDP Switch 1 PDP Switch 2

MAT1
MAT2

MAT3
MAT4

stage1 stage2 stage3 stage4stage1 stage2 stage3 stage4

Fig. 5. Example on deploying MATs in a vNF in PDP switches.

Algorithm 2 takes care of the second phase. Line 1 is for
the initialization, where we introduce V r to record the PDP

switches that will be selected for SFC recompilation, a dummy
SNT G̃(Ṽ , Ẽ) that is identical to G(V,E) to track hypothetical
SFC deployment, and an SFC set R̃′ to track the SFCs that
still need to be processed. Then, the for-loop of Lines 2-6 try
to hypothetically deploy the unprocessed vNFs in each SFC
on the PDP switches that currently do not carry any superset
SFCs. Specifically, if all the MATs in a vNF can be placed
in PDP switch v (i.e., we do not allow a vNF being deployed
across multiple PDP switches to avoid QoS degradation), we
deploy it hypothetically, update the network status of G̃(Ṽ , Ẽ)
accordingly, and insert v in V r. Fig. 5 explains the procedure.
Here, we assume that the vNF consists of 4 MATs and each
PDP switch only contains 4 stages. The dependencies among
the MATs indicate that they will take at least 3 stages. Then,
we traverse the stages of PDP Switch. Due to the resource
limitation of PDP Switch 1 and that vNF cannot be placed
across switches, we have to deploy MATs in PDP Switch 2.

Algorithm 1: Processing Pending SFC Requests
Input: Set of pending SFC requests R′, SNT G(V,E).
Output: Updated set of pending SFC requests R′.

1 sort SFCs in R′ first in descending order of number of vNFs
and then in descending order of number of flows;

2 for each SFC Ri ∈ R′ in sorted order do
3 calculate K shortest paths from si to di for Ri;
4 for each path from short to long do
5 if Ri can be provisioned with the path then
6 serve Ri with the path and remove it from R′;
7 update network status accordingly;
8 break;
9 end

10 end
11 end
12 return R′;

Next, we remove each SFC whose vNFs are all processed
from R̃′, and use Lines 7-19 to process the remaining SFCs
in R̃′. This time, we need to select the PDP switches that
currently carry SFCs to recompile, and thus try to first select
those serving less active flows to reduce the complexity of
flow migration. Therefore, the weight $v of each in-service
PDP switch v can be calculated as

$v =
∑
t

W̃ t
v , ∀v ∈ V s, (28)

where W̃ t
v is the number of flows that a vNF of type t deployed

on v currently carries (Line 8). Then, we try to empty the
SFCs deployed on an in-service PDP switch and deploy SFCs
in R̃′ on it hypothetically (Lines 9-19). Finally, we put all
the PDP switches selected to be recompiled in V r, including
both unused and in-service ones, and insert the SFCs currently
using nodes in V r ∩ V s in set of pending SFC requests R′,
since reprogramming nodes in V r∩V s will impact these SFCs.

2) Generated Reconstructed Pipelines and Provision Pend-
ing SFCs: Algorithm 3 solves the second step to generate re-
constructed pipelines for the selected PDP switches with fine-
grained table merging, and to provision all the pending SFCs



Algorithm 2: Selecting PDP Switches to Recompile
Input: Set of pending SFC requests R′, SNT G(V,E), set of

unused nodes V a, and set of in-service nodes V s.
Output: Updated set of pending SFC requests R′, and set of

nodes that need to be recompiled V r .
1 V r = ∅, G̃(Ṽ , Ẽ) = G(V,E), R̃′ = R′;
2 for each SFC Ri ∈ R′ in sorted order do
3 for each PDP switch v ∈ V a from close to far to si do
4 hypothetically deploy cij on v and update status of

G̃(Ṽ , Ẽ) accordingly and update R̃′;
5 end
6 end
7 sort SFCs in R̃′ first in descending order of unprocessed vNFs

and then in descending order of number of flows;
8 sort nodes in V s in ascending order of weights with Eq. (28)

and reset their pipelines hypothetically in G̃(Ṽ , Ẽ);
9 for each SFC Ri ∈ R̃′ in sorted order do

10 for each node v ∈ V s in sorted order do
11 try to deploy as many unprocessed vNFs in Ri in v

hypothetically as possible;
12 update status of G̃(Ṽ , Ẽ) accordingly;
13 insert v in V r if it is not already there;
14 if all the vNFs in Ri are processed then
15 break;
16 end
17 end
18 end
19 insert SFCs currently using nodes in V r ∩ V s in R′;
20 return R′ and V r;

accordingly. Algorithm 3 uses two sub-procedures (DeployS-
ingleMAT(·) and DeploySFC(·)), while its main procedure is
in Lines 22-26. Here, the basic idea is to 1) concatenate all the
stages in the nodes in V r to get a super PDP switch ṽ with
|V r| ·S stages (Line 22), 2) deploy each pending SFC Ri on ṽ
with a sliding-window-based approach (Lines 23-25), and 3)
partition stages in ṽ to |V r| parts, each of which corresponds
to the reconstructed pipeline of a PDP switch, and map the
pipelines to PDP switches to finally provision the pending
SFCs with the smallest total hop-count (Line 26).
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Fig. 6. Network topologies used in simulations.

DeploySFC(·) explains how to deploy a pending SFC in
the super PDP switch (Lines 11-21). Specifically, for each
vNF in each pending SFC in sequence, we first find the MAT
in it that uses the most hardware resources (Line 13), then
determine the sliding window of stages in ṽ, which can be
used to deploy the MAT, based on its dependencies with other
MATs and the resource usage of the stages in ṽ (Line 14),
and finally deploy the MAT by calling DeploySingleMAT(·)

(Line 15). Next, after determining the deployment scheme of
the MAT that uses the most hardware resources, we repeat the
similar procedure to deploy each MAT in the vNF (Lines 16-
19). DeploySingleMAT(·) deploys an MAT in a stage within
the current sliding window (Lines 1-10). Specifically, it checks
each stage within the current window, tries to merge the MAT
with deployed MATs in the stage, and deploys the MAT in
the stage where the smallest resource usage can be achieved.

Algorithm 3: Recompiling Pipelines for Pending SFCs
Input: Set of pending SFCs R′, nodes to be recompiled V r .

1 DeploySingleMAT(MAT (m; a), a sliding window ω):
2 for each stage s in sliding window ω do
3 for each deployed MAT (m′; a′) in s do
4 if MATs (m; a) and (m′; a′) can be merged then
5 calculate resource usage after merging;
6 end
7 end
8 end
9 select the merging scheme leading to smallest resource usage

and deploy (m; a) in the corresponding stage s∗;
10 return s∗;
11 DeploySFC(SFC Ri, super node ṽ):
12 for each vNF cij in Ri do
13 find MAT (mijl̃; aijl̃) that uses the most SRAM/TCAM;
14 determine sliding window of stages ω in super PDP switch

ṽ that can carry (mijl̃; aijl̃);
15 s∗

l̃
= DeploySingleMAT((mijl̃; aijl̃), ω);

16 for each MAT (mijl; aijl) in cij from close to far to MAT
(mijl̃; aijl̃) do

17 update sliding window ω for deploying (mijl; aijl);
18 s∗l = DeploySingleMAT((mijl; aijl), ω);
19 end
20 end
21 return ṽ with updated status;
22 initialize |V r| · S stages for a super PDP switch ṽ;
23 for each SFC Ri ∈ R′ do
24 ṽ = DeploySFC(Ri, ṽ);
25 end
26 partition stages in super PDP switch ṽ into |V r| parts, each of

which contains S stages, and map each part to a PDP switch in
V r to minimize the total hop-count of SFCs in R′;

IV. PERFORMANCE EVALUATIONS

This section discusses the performance evaluations of our
MrgRecmp4 with numerical simulations and experiments with
real-world PDP switches based on Tofino ASICs.

A. Numerical Simulations

The simulations consider PDP switches based on Tofino
ASICs, and use the P4 programs of discrete stateful vNFs as
inputs. We assume that MrgRecmp4 can support 10 types of
stateful vNFs, which are the stateful firewall, DNS reflection
attack protector, Layer-4 load balancer, stateful NAT, heavy
hitter detection, SYN flood detection, DNS request analyzer,
flow size monitor, and super spreader identification. According
to the operation principle in Section II, MrgRecmp4 does not
have restrictions on how many or which types of vNFs that it
can support, and if a new type of vNFs need to be addressed,
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Fig. 7. Results of small-scale simulations.

we only need to add in the P4 program of such a vNF and then
incremental support can be achieved. Our simulations average
the results from 5 independent runs to get each data point.

The simulations emulate the pipeline compilation of PDP
switches based on P4 Insight [24], and consider two networks
using the 6-node and NSFNET topologies in Fig. 6, respective-
ly. The 6-node network is used for the small-scale simulations
where the BILP is solvable. In addition to our BILP and
heuristic with Algorithms 1-3, there are three benchmarks:
• First-fit without Window (FF-NoWnd): Instead of using

the sliding-window-based scheme in Algorithm 3, it se-
lects the first stage that is available to deploy each MAT
and applies fine-grained merging in the stage if possible.

• Exact Merging Only (ExtMrg): Fine-grained merging is
not used during SFC recompilation, and only identical
MATs can be merged (i.e., the exact merging scheme
addressed in SPEED [11] and pSFC [12]).

• Chaining First (ChainFirst): Instead of using Algorithm
3, it first merges all the pending SFCs to superset SFCs
according to resource constraints of PDP switches, and
then applies fine-grained merging to adjacent MATs.

We first discuss the small-scale simulations with the 6-node
topology. Each simulation randomly selects PDP switches
(with an average of 3) as in-service nodes, deploys a superset
SFC with [5, 8] vNFs in random types on each in-service
node, and generates [3, 11] new SFCs, each of which contains
[3, 8] vNFs in random types. The numbers of flow entries
allocated for each existing superset SFC and each new SFC are
set within [10000, 40000] and [5000, 15000], respectively. The
other parameters are set according to the practical values used
in [11, 12]. For Eq. (6) (low-level objective), we set α = 0.5.

TABLE V
RUNNING TIME OF SMALL-SCALE SIMULATIONS (SECONDS)

Number of
New SFCs

BILP MrgRecmp4 FF-NoWnd ExtMrg
Chain
First

3 352.2 0.039 0.040 0.028 0.029
5 504.8 0.065 0.057 0.050 0.052
7 1209 0.076 0.088 0.060 0.062
9 1221 0.103 0.111 0.092 0.095

11 1638 0.126 0.143 0.131 0.135

Figs. 7(a) and 7(b) show the results of one-time operation,
where each simulation only considers a batch of new SFCs
for SFC recompilation. Fig. 7(a) indicates that the heuristic
(MrgRecmp4) approximates the solutions from the BILP well
when solving PDP switch selection in the upper-level model.
It is interesting to observe that when the number of SFCs is
11, the objective increases significantly. This is because due
to the resource limitations of each switch pipeline, more PDP
switches need to be recompiled in this case.

The objectives of the lower-level model, which are obtained
based on the used resources in PDP switches and total hop-
count of provisioned SFCs after SFC recompilation, are plotted
in Fig. 7(b). Our heuristic outperforms all the benchmarks and
its gaps to the solutions from the BILP are the smallest. Table
V lists the running time of the algorithms, which indicates that
the heuristic runs much faster than solving the BILP directly
and its running time is similar as that of the benchmarks.
Fig. 7(c) shows the results of dynamic operations, where each
simulation deploys SFCs in batches (an SFC recompilation for
each batch) from an empty network, and get the maximum
number of SFCs that each algorithm can eventually put in the
network. Each batch contains 5 new SFCs whose setting is
the same as that for new SFCs in one-time operation. The
BILP accommodates the most SFCs, and our heuristic still
outperforms all the benchmarks, verifying its effectiveness on
achieving efficient SFC recompilation.

Fig. 8 shows the results of large-scale simulations using
NSFNET, where the parameter settings stay the same. The
lower-level objectives in Fig. 8(a) still indicate that our heuris-
tic uses the least resources in PDP switches and serves SFCs
with the smallest total hop-count, after SFC recompilation,
while Fig. 8(b) suggests that our proposal accommodates much
more SFCs than the benchmarks in dynamic operations (with
an improvement of [32.3%, 45.1%]).

B. Experimental Evaluations

Finally, we evaluate the performance of our proposed Mr-
gRecmp4 in a real-world PDP switch based on Tofino ASICs.
Specifically, we generate 10 batches of random SFCs, where
each batch contains 5 SFCs, each of which includes [2, 6] vNFs
in random types, use the algorithms to obtain the arrangement
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Fig. 8. Results of large-scale simulations.

of MATs in each superset SFC that combines the SFCs in
each batch, and implement the SFC compilation results as
P4 programs. Similar as the setting of simulations, the flow
entries of each SFC are between [5000, 15000]. Then, we use
P4 Insight to check the resource usages after compiling the
P4 programs in the PDP switch. Table VI shows the results
on average resource usages, and compared with the three
benchmarks, MrgRecmp4 (with our heuristic) consumes same
or less resources in all the types. It is interesting to notice that
MrgRecmp4 can even use fewer stages than the BILP. This is
because the BILP only tries to find solutions with the optimal
resource saving, while our sliding-window-based heuristic for
MrgRecmp4 can optimize the MAT placement on used stages
to increase the probability of table merging. Note that, as the
existing studies in [11, 12, 25] have already verified that SFC
compilation with table merging will not affect the processing
latency and throughput of SFCs noticeably, we do not show
the related experimental results here to save space.

V. RELATED WORK

Stateful vNF deployment on PDP switches and related
resource optimization. The works in [18, 19, 26–30] studied
the offloading of one or a few specific vNFs to PDP switches,
and thus their solutions are not generic enough. On the other
hand, the proposals of OPP [13], FlowBlaze [15], and SDPA
[31] designed general state machine paradigms for offloading
stateful vNFs to PDP switches, but they did not address how to
optimize the deployment of a stateful SFC with multiple vNFs.
The studies in [32–35] tried to merge P4 programs, but their

TABLE VI
HARDWARE RESOURCE USAGES OF SFC RECOMPILATION

Resource BILP MrgRecmp4
FF-

NoWnd
ExtMrg

Chain
First

SRAM 23.3% 24.1% 27.2% 30.8% 29.8%
Exact Match
Input Xbar

9.4% 8.4% 9.4% 10.7% 9.3%

Gateway 8.3% 7.8% 8.3% 8.3% 7.8%
Hash Bit 13.1% 11.2% 13.2% 15.5% 12.7%
TCAM 2.7% 2.7% 2.7% 2.7% 2.7%
Stash 6.8% 5.2% 7.3% 8.9% 6.8%

Logical
Table ID

19.3% 18.2% 19.3% 19.8% 18.2%

Stages 14 11 11 11 11

merging strategies were not fine-grained enough for stateful
vNFs. P4SC [36] addressed the merging problem at the vNF
level, while SPEED [11], pSFC [12], and Dapper [37] went
one step further and considered table merging at the MAT level
to optimize the offloading of SFCs to PDP switches. However,
they only tried to merge identical MATs, and their ILP models
handled table merging and SFC deployment separately, which
might only provide suboptimal results.

Dynamic SFC deployment on PDP switches. P4SC [36],
p4NFV [38] and DPPx [39] have developed the system archi-
tectures and interfaces to enable dynamic SFC deployment
using P4. The studies of Flexmash [40], P4SFC [23] and
FlexNF [41] focused on how to independently serve SFCs of
multiple types and QoS demands with separate PDP pipelines.
ILP models were formulated in [20, 42] to optimize the vNF
deployment and traffic rerouting during reprogramming PDP
switches. Sirius [43] was one of the latest studies on the topic,
which designed a system to automate SFC composition on
PDP switches and leveraged packet recirculation to realize
different SFCs. However, all these aforementioned studies did
not consider the fine-grained table merging addressed in this
work to optimize the SFC recompilation on PDP switches.

VI. CONCLUSION

We proposed a stateful SFC recompilation system, namely,
MrgRecmp4, which considers the existing and new SFCs in
a PDP network to optimize the P4 program recompilation
for deploying new SFCs as reconstructed pipelines. A BILP
model was first formulated for the network-wide optimization
of MrgRecmp4, and then a sliding-window-based heuristic
was proposed to solve the problem quickly. Both simulations
and real-world experiments confirmed that MrgRecmp4 out-
performs existing benchmarks in terms of hardware resource
usages in PDP switches and performance of SFC provisioning.
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