
1

P4INC-AOI: All-Optical Interconnect Empowered
by In-Network Computing for DML Workloads

Xuexia Xie, Binjun Tang, Xiaoliang Chen, and Zuqing Zhu, Fellow, IEEE

Abstract—Increasing demands for distributed machine learn-
ing (DML) have posed significant pressure on data-center net-
works (DCNs). This promotes the adoption of reconfigurable all-
optical interconnects (AOI) in DCNs leveraging optical circuit
switching (OCS) for better performance on throughput, energy
efficiency, and data transfer latency. Despite their benefits, these
OCS-based DCNs (ODCNs) still bear limited flexibility due
to the larger switching granularity and longer reconfiguration
latency of OCS. To address this issue, this work introduces in-
network computing (INC) in an ODCN to realize P4INC-AOI,
which can orchestrate INC and AOI to explore their mutual
benefits for accelerating the training of DML jobs with less AOI
reconfigurations. In the control plane of P4INC-AOI, we address
the scheduling of concurrent DML jobs by formulating a mixed
integer linear programming (MILP) model and proposing a time-
efficient heuristic, to allocate multi-dimensional resources and
configure AOI for minimizing the longest job completion time
(JCT) across workloads. For the data plane, we extend existing
in-network gradient aggregation schemes to accelerate DML jobs
more efficiently. We first implement P4INC-AOI and verify its
performance in a small-scale ODCN testbed, and further justify
its effectiveness with large-scale simulations. Our experimental
results demonstrate that compared with an ODCN without INC,
P4INC-AOI not only cuts down AOI reconfigurations effectively
but also reduces the average JCT of DML jobs in ResNet50 and
VGG16 by 46.66% and 56.34%, respectively.

Index Terms—All-optical interconnect, Data-center networks,
P4, In-network computing, Distributed machine learning.

I. INTRODUCTION

OVER the past decade, the fast development of artificial
intelligence (AI) has fueled an explosive increase in the

sizes of machine learning (ML) models and their training data
sets [1, 2]. For instance, as one of the most famous large
language models (LLMs), GPT-3 features approximately 175
billion trainable parameters, while the size of its training data
set is ∼45 TB [3]. Consequently, distributed machine learning
(DML), which fuses the computing and storage power of a
number of servers outfitted with hardware accelerators (e.g.,
graphics processing units (GPUs)) to make the training of large
ML models tractable, becomes inevitable [4–6]. Specifically,
people can form DML clusters in a data-center network (DCN)
and leverage parallelization techniques such as data/model
parallelism to accelerate ML training [7]. However, the syn-
chronization and updating of parameters in each DML cluster
can cause a huge volume of data transfer, posing great pressure
on the architecture of DCNs. Moreover, recent studies have
already shown that due to the insufficient inter-pod throughput

X. Xie, B. Tang, X. Chen and Z. Zhu are with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230027, P. R. China (email: xlichen@ieee.org).

in today’s DCNs, the communication phase can more likely
be the bottleneck of DML training [8–10].

Most of today’s DCNs are still purely based on electrical
packet switching (EPS), where inter-rack/pod communication
goes through a hierarchical EPS network planned based on the
worst-case scenario [11]. This, however, restricts the average
resource usage and adaptivity of these DCNs [12–14]. Hence,
although DCN operators have upgraded their EPS switches
frequently, it is still challenging for EPS-based DCNs to
cope with the ever-increasing traffic demands from bandwidth-
intensive applications such as DML training [15]. Furthermore,
EPS also possesses other intrinsic drawbacks, e.g., high power
consumption and long processing delay [16–18].

Therefore, researchers have tried to introduce optical cir-
cuit switching (OCS) into DCNs for better performance on
throughput, data transfer latency, and energy efficiency [19–
25]. Specifically, an OCS-based DCN (ODCN) replaces the
spine layer in its EPS-based counterpart with an all-optical
interconnect (AOI) built with OCS switches [26]. Then, the
ODCN’s topology can be reconfigured with topology engi-
neering (TPE) to better adapt to dynamic and skewed traffic
demands [15]. Although TPE effectively enhances the adaptiv-
ity of ODCNs, it can hardly be done without causing service
interruptions, especially with the currently-deployed commer-
cial OCS switches that bear fiber-level switching granularity
and millisecond-scale reconfiguration latency [18, 26]. This
issue offsets the benefits of ODCNs and makes it challenging
for them to keep up with the fast development of large-scale
DML training, especially when the DML workloads are highly
dynamic [27]. While advanced photonic technologies can be
utilized to achieve low-latency and fine-grained optical switch-
ing [28–30], the solutions either still stay in the laboratorial
validation phase [30] or have difficulty to be commercial-
ized due to scalability limitations [28] or high capital costs
[29]. Consequently, ODCNs built on commercial spatial OCS
switches present the mainstream choices of current DCs [31].

On the other hand, the impact of long reconfiguration
latency can be mitigated if we can reduce the frequency of TPE
but still keep the match degree between an ODCN’s topology
and traffic matrix at a relatively high level. However, this can
hardly be done if we cannot make the traffic matrix malleable
[32]. The advances on programmable data plane (PDP) have
revealed that a PDP-based EPS switch can process packets
with arithmetic operations according to customized protocols
and network functions [33]. Hence, PDP empowers networks
with in-network computing (INC) [34], which reshapes or even
terminates traffic flows as they traverse a network. This enables
us to constantly fit the topology of an ODCN to its current

2

traffic matrix, and thereby, to implicitly reduce the frequency
of AOI reconfigurations [35]. Specifically, we can deploy PDP
switches at top-of-rack (ToR) or egress points of pods in an
ODCN to largely confine data transfers within racks/pods with
distributed INC, which otherwise would consume AOI con-
nections. Consequently, this allows for orchestrating clusters
of workloads in the ODCN to minimize their job completion
time (JCT) while reducing unnecessary AOI reconfigurations.

Previously, in [35], we proposed P4INC-AOI to implement
the aforementioned idea of orchestrating INC and AOI to
accelerate distributed computing workloads in an ODCN, and
used Hadoop MapReduce jobs as an example to demonstrate
the effectiveness of P4INC-AOI. To the best of our knowledge,
it was the first attempt to explore the mutual benefits of INC
and AOI for distributed computing workloads in ODCNs.

However, the study in [35] was still preliminary for the
following reasons. First, it did not design an algorithm to
schedule dynamic computing clusters in P4INC-AOI. Note
that, the algorithm design is not trivial as it needs to jointly
consider AOI reconfigurations and the unique features of
INC. Specifically, INC can reshape the traffic generated by
computing clusters, which results in a malleable traffic matrix
and makes existing job scheduling schemes (e.g., those in [36,
37]) inapplicable. Moreover, INC introduces a new type of
resources (i.e., memory in PDP switches) to the job scheduling
problem, whose allocation is critical for reducing JCT. Second,
the data plane implementation in [35] was very preliminary,
since it did not enable INC for DML training or address the
practical issues when INC needs to handle multiple dynamic
computing clusters (e.g., cluster indexing, traffic congestion,
and competition on PDP switch resources).

In this work, we extensively expand P4INC-AOI to make it
suitable for orchestrating INC and AOI to accelerate dynamic
DML workloads with less AOI reconfigurations. We first
model an ODCN as a discrete-time system and formulate a
mixed integer linear programming (MILP) model to jointly
tackle the allocation of multi-dimensional resources (i.e., IT
resources in server pools, memory in PDP switches, and
bandwidth on inter-rack/pod links) and configuration of AOI
to minimize the longest JCT across DML workloads. Then, we
prove the problem of scheduling dynamic DML workloads in
P4INC-AOI is NP-hard, and propose a time-efficient heuristic
that can determine whether each DML cluster should be served
with INC and how to schedule them based on the remaining
multi-dimensional resources in the ODCN and the impact
on in-service DML workloads. Next, we extend the existing
data plane implementations [38, 39] to enable INC to handle
dynamic DML workloads in P4INC-AOI. Finally, we conduct
extensive numerical simulations to evaluate our proposal and
also test it experimentally in a small-scale ODCN testbed that
is built with off-the-shelf components. Both simulation and
experimental results verify the effectiveness of our proposal.

Our major contributions can be summarized as follows:
• To the best of our knowledge, this is the first study on

how to orchestrate INC and AOI to schedule dynamic
DML workloads in an ODCN.

• We formulate an MILP model to describe the optimiza-
tion for minimizing the longest JCT across DML work-

Fig. 1. Operation principle of P4AOI-INC, where the cluster handles multiple
jobs, each with several workers. Workers from the same jobs are marked in
the same colors, and wji denotes the j-th worker of job i.

loads in P4INC-AOI, and design a time-efficient heuristic
that can be practically implemented in the control plane.

• We design and implement the data plane of P4INC-AOI
to enable INC for dynamic DML workloads with PDP
switches based on Tofino ASICs, and make sure that they
work seamlessly with AOI reconfigurations.

• Both simulation and experimental results confirm that
our proposed P4INC-AOI effectively accelerates DML
training, and outperforms the ODCN without INC in
training throughput, JCT, and AOI reconfigurations.

The rest of the paper is organized as follows. Section II
discusses the related work. We present the operation principle
of P4INC-AOI in Section III. The MILP model and heuristic
for scheduling DML workloads in P4INC-AOI are described in
Sections IV and V, respectively. In Section VI, we explain the
system design and implementation of the data plane of P4INC-
AOI. The performance evaluations are discussed in Section
VII. Finally, Section VIII summarizes this paper.

II. RELATED WORK

In this section, we review the basics about DML, explain the
opportunities and challenges of training DML in ODCNs, and
comment on INC and its applications for DML acceleration.

A. DML Training

DML realizes parallelization by dividing its training work-
load among multiple computing nodes (namely, workers) to
relieve the pressure on computing and storage power of each
worker [4]. One common approach is data parallelism, which
splits a large training data set across workers and lets each
worker train an ML model over its portion to obtain a local
gradient [7]. The local gradients are then combined to update
the global gradient using an algorithm like the stochastic
gradient descent (SGD) [40]. This procedure is repeated in
iterations for model convergence and parameter optimization
[41], and a number of communication frameworks have been
developed for the synchronization and updating of parameters
among workers, such as the parameter server, ring-AllReduce,
distributed data parallel, and peer-to-peer [42].

Among the communication frameworks, the parameter serv-
er is a high-profile setup that organizes one or more parameter

3

servers (PS’) and several workers in a tree-like cluster [4, 10].
Each worker sends its local gradients to a PS (i.e., incast).
Then, the PS obtains global gradients by averaging the local
gradients and updates the parameters of the global model to
the workers for further computation (i.e., broadcast). While
PS facilitates fast gradient aggregation with fewer steps, each
training iteration in PS involves collective communications be-
tween the PS and workers with incast and broadcast, which can
consume huge bandwidth [43]. Consequently, today’s DML
training widely adopts ring-based [44] or hybrid parallelism
schemes [45], which are more scalable and less vulnerable to
bandwidth bottlenecks. Nevertheless, more recent studies have
revealed that INC-based traffic aggregation and reshaping can
effectively mitigate the bottlenecks caused by PS and promote
its state-of-the-art performance in DML training [10, 38].
The benefit of INC when combined with hybrid parallelism
schemes remains a relevant yet under-explored area.

B. DML Training in ODCNs

As we have explained above, the collective communications
caused by DML training can generate bottlenecks in a tradi-
tional DCN that uses a hierarchical EPS-based inter-rack/pod
network. This issue can potentially be resolved by considering
ODCNs, whose advantages span throughput, data transfer
latency, energy efficiency, and topological flexibility [26].
Since the aggregated traffic of DML training at the pod level
is highly predictable and exhibits recurring spatial patterns,
most of today’s ODCN approaches consider to replace the
spine layer of EPS-based DCNs with an inter-pod AOI built
with OCS switches [15, 31, 46, 47], to adapt to slow inter-
pod traffic changes with low-frequency AOI reconfigurations.
However, the millisecond-level reconfiguration latency of the
commercial OCS switches used in these ODCNs can still
induce troublesome service interruptions [27] considering the
millisecond-scale dynamics of collective communications [48]
and the coexistence of heterogeneous DML jobs. On the other
hand, by incorporating the OCS technologies that can deliver
a reconfiguration latency at microsecond or even nanosecond
level, researchers also tried to directly connect ToR switches to
AOI [28, 29], hoping that high-frequency AOI reconfigurations
can be invoked in respond to fast rack-level traffic changes.
Nevertheless, these OCS technologies either can not support
high port-count or are not ready for commercialization.

In all, the granularity and reconfiguration latency of OCS are
still the major challenges for using ODCNs to support highly-
dynamic DML workloads efficiently. Although continuing to
reduce OCS reconfiguration latency can eventually resolve the
challenges, how to realize it in a practical and commercially-
available way is still an open research problem.

C. INC and its Applications for DML Training

INC aims to intercept and process traffic along its forward-
ing path with PDP hardware, including FPGA [49], SmartNIC
[50], and programmable ASIC [51], and it offers significant
advantages in reducing traffic volume in networks and short-
ening processing time at end-hosts [34]. Specifically, the study
in [52] suggested that having a small portion of network

devices support INC can lead to a significant reduction in
network utilization. As for accelerating DML, various INC
schemes have been proposed in the literature [38, 39, 53, 54],
which all considered the parameter server setup. SwitchML
[38] considered the case where all the workers of a DML
job are located in the same rack, and proposed to leverage
INC to offload the gradient aggregation of workers to the ToR
switch. ATP [39] tried to use INC to accelerate multiple DML
jobs with in-network aggregation, and designed a decentralized
aggregator allocation mechanism. Panama [53] developed an
FPGA-based in-network aggregation scheme and proposed a
load-balancing protocol for it. GRID [54] studied gradient
routing for DML training with in-network aggregation.

However, all the existing studies on INC for DML training
assumed that EPS-based DCNs were used. Therefore, the
mutual benefits of INC and AOI still have not been explored
for accelerating DML training. Therefore, in this work, we
design P4INC-AOI to study how to empower ODCN with INC
for serving highly-dynamic DML workloads efficiently.

III. OPERATION PRINCIPLE OF P4AOI-INC

Fig. 1 explains the operation principle of our P4AOI-INC,
where an AOI interconnects a set of network units, each of
which consists of a PDP switch and a server pool. Here, we
hope to point out that P4AOI-INC is generic enough such
that each network unit can refer to either a rack or a pod.
Specifically, if the network unit refers to a rack, the PDP
switch is just the ToR switch, and if it represents a pod, the
PDP switch is a virtual one, which is abstracted by considering
all the EPS switches in the pod. The PDP switch enables INC
for accelerating DML jobs, i.e., we can aggregate gradients of
a DML job in it. For jobs whose workers are within the same
unit, INC can completely replace the PS for global gradient
aggregation (e.g., Job 1 in Fig. 1). For the case when the
workers of a job are in different units, INC only aggregates
the gradients from the workers in its unit and sends the partial
results to the PS, while the rest of the aggregation operations
follow a traditional scheme (e.g., Job 2 in Fig. 1).

In addition to the PDP switches, we can also deploy the PS
in a server pool, which means that INC is not turned on for
the DML job (e.g., the PS of Job 3 in Fig. 1). The workers
of all the DML jobs can only be deployed in server pools,
and necessary connections need to be set up to support the
collective communications between each PS and its workers.
For a DML job, if its PS and workers are in the same
network unit, its communications only consume the uplink and
downlink bandwidth between the corresponding server pool
and PDP switch, and otherwise, we need to configure the AOI
to bridge the induced cross-network-unit communications.

Note that, according to the analysis done by Intel [55], PDP
switches are not more expensive or more power-consuming
than legacy switches when running at the same data-rate.
Hence, as offloading PS’ to them can effectively reshape incast
traffic and mitigate bandwidth bottlenecks, which otherwise
would require installation of more network interface cards and
transceiver modules to sustain the same performance level,
PDP switches actually makes ODCNs more cost-effective [56].

4

Fig. 2. Examples to show mutual benefits of INC and AOI for DML training,
(a)-(b) schemes without INC, and (c)-(d) schemes with INC. Here, wji still
denotes the j-th worker of job i. Resources occupied by the same jobs are
marked in the same colors. For instance, green is for Job 1: in (a), Job 1
uses the CPU resources in Unit 3 (PS1), and in (c), Job 1 consumes the INC
resources in its local unit. The units are interconnected via OCS links labeled
by solid lines, with the red ones representing heavily-loaded links.

To understand the mutual benefits of INC and AOI for DML
training, we plot four examples in Fig. 2. Here, we consider an
ODCN that consists of four network units, where Units 1-2 are
dedicated to GPU-based computation and can carry workers
of DML jobs, while Units 3-4 are for CPU-based computation
and can be used to instantiate PS’. There are three DML jobs
to schedule, where Job 1 (green) and Job 2 (yellow) both use
two workers, and Job 3 (blue) includes four workers. Figs.
2(a) and 2(b) show the schemes without INC.

In Fig. 2(a), four connections need to be set up through the
AOI to support the cross-unit communications. As each DML
job requires at least one new connection to bridge their workers
and PS, three AOI reconfigurations are needed in the worst
case, which can cause increased port utilization and traffic
interruption. Additionally, units with multiple PS’ (e.g., Unit
3) may experience significant incast pressure (indicated by red
lines). The scheme in Fig. 2(b) lets the workers run in a less
fragmented way, i.e., the workers of Jobs 1 and 2 all run in
Unit 1 with their PS’ placed in Unit 3, and the workers and
PS of Job 3 are in Units 2 and 4, respectively. Then, we only
need to set up three connections through the AOI, causing two
AOI reconfigurations at most.

Note that, due to the dynamic arrival of workloads and
fragmented server usage, a DCN operator cannot always place
jobs optimally. Hence, the worker distributions shown in Figs.
2(a) and 2(b) can both happen in an ODCN. Figs. 2(c) and
2(d) illustrate the schemes with INC. In Fig. 2(c), the workers
are distributed the same as that in Fig. 2(a), but with INC, we
can offload the PS’ of Jobs 1 and 2 to PDP switches, and only
one PS need to be placed in Unit 3 for Job 3 to aggregate the
gradients from Units 1 and 2. Then, INC reduces the number
of connections through the AOI to two, and only one AOI
reconfiguration is required as the connections are both for Job
3. Finally, Fig. 2(d) shows how to improve the scheduling
scheme in Fig. 2(b) with INC. This time, the PS’ of all the

jobs are offloaded to PDP switches, and thus no connection
needs to be set up through the AOI, i.e., the three jobs can be
served without requiring any AOI reconfiguration.

Fig. 3. System design.

Although the examples in Fig. 2 demonstrate the mutual
benefits of INC and AOI for DML training, these benefits can-
not be fully exploited without a carefully designed mechanism
that can jointly optimize the allocation of multi-dimensional
resources in the ODCN and the configuration of its AOI.
Therefore, we design the system architecture in Fig. 3 for
P4INC-AOI. The data plane follows the generic architecture of
an ODCN, where each unit contains a PDP switch and multiple
servers. The servers provide GPU resources for workers or
CPU resources for PS’. The PDP switches enable INC for the
synchronous gradient aggregation of DML jobs while retaining
data forwarding functionalities. The control plane manages
the job queue and monitors the ODCN’s state. It orchestrates
the multi-dimensional data plane resources by invoking the
optimization to compute AOI reconfiguration, job scheduling
and bandwidth allocation schemes. The operation principles of
the key components in P4INC-AOI are elaborated as follows.

AOI: after job scheduling and traffic routing have been
determined, the network controller configures the connections
in AOI to provision inter-unit traffic.

Job schedulers: each server pool has a job scheduler that
receives job scheduling schemes from the network controller,
assigns a service ID to each job, and allocates to each INC
job an aggregator segment in the PDP switch. When a job
is scheduled to start, the job scheduler instructs its PS and
workers to start the current training iteration.

PDP switches: PDP switches primarily undertake two tasks:
aggregating gradients for INC jobs and data forwarding for no-
INC jobs. Each switch identifies the type of a job using the
service ID encoded in packet headers. To facilitate gradient
aggregation, we abstract switch memory as a unified array
of aggregators, label each aggregator segment by its size and
offset, and assign each INC job to a segment in runtime. For
non-INC jobs, the network controller installs table entries in
each switch to steer gradient flows between PS’ and workers.

IV. DML WORKLOAD SCHEDULING IN P4INC-AOI
In this section, we first explain the network model of

P4INC-AOI and formulate an MILP to describe the optimiza-
tion for scheduling DML jobs with INC in it.

5

A. Network Model
For P4INC-AOI, we consider an ODCN that interconnects

N network units, each of which consists of a PDP switch and
a server pool. Hence, we can abstract each network unit as a
virtual node v ∈ V , where V is the set of network units and
we have |V | = N . Each node v ∈ V connects to the AOI (i.e.,
one or a set of commercial optical cross-connect (OXC) [15])
in the ODCN through Poxc,v optical ports, each of which has a
capacity of Bport. Each port can only connect to one other port
through the AOI, and for simplicity, we assume that duplex
communication can be realized through each pair of ports1. In
other words, the wavelength(s) emitted from an optical port
is/are switched from an input to an output port of an OXC
as an ensemble. In each node v, we refer to the direction
from the PDP switch to the server pool as downlink, while the
reverse one is uplink. The uplink/downlink capacities of each
PDP switch are equal, and their sum defines the bandwidth
capacity of the switch, denoted as BPDP,v .

P4INC-AOI can enable INC in a PDP switch to facilitate the
gradient aggregation for DML workers running in the server
pool under the PDP switch. Specifically, for the workers of a
same DML job, INC replaces their PS to calculate and return
aggregation results to them, and in the process, INC consumes
memory resources in PDP switches [38, 39]. Hence, we need
to map the PS’ of DML jobs to PDP switches if the jobs will
be handled with INC, which is part of the scheduling problem
considered in this work. We denote the INC capacity of a PDP
switch v ∈ V as NINC,v , in terms of the number of DML jobs.

For each DML job in P4INC-AOI, we assume that its PS
and workers are placed by its service provider (i.e., a different
entity from the DCN operator). Therefore, the placement of the
PS and workers of each DML job is the input to our DML job
scheduling problem, and without loss of generality, we assume
that the PS and workers of a DML job can be placed in either
the same unit or different ones. As explained in Section II-A,
there are four key steps in each training iteration of a DML
job, i.e., local calculation, pull gradients, parameter update,
and push gradients. The local calculation is performed by the
workers and its duration is a constant for each DML job, and
thus the optimization of DML job scheduling does not need to
consider it. As for the parameter update, its duration depends
on where it is performed (i.e., in the PS placed in a server
pool or a PDP switch with INC) and the number of DML
model’s parameters, and thus the duration can be treated as
a constant. Note that, for the case with INC, the duration of
parameter update can be assumed to be zero because PDP
switches perform gradient aggregation in a pipelined manner
[38, 39] (i.e., the parameter update is made concurrent with
the steps of pull/push gradients). Finally, the durations of
pull/push gradients rely on the bandwidth allocated to the
communications between the workers and PS, which will be
determined by our DML job scheduling.

Based on the considerations above, the DML job scheduling
in P4INC-AOI becomes: given a batch of concurrent DML

1Note that, for a practical AOI, two pairs of ports will actually be needed
to realize the duplex communication between two PDP switches v and u. But
as v and u always communicate in both directions, we can abstract the two
port pairs as one and assume that the communication through it is duplex.

jobs and the locations of their PS’ and workers, we optimize
which jobs will be processed with INC, when the communi-
cations of the pull/push gradients of each job should start, and
how to allocate bandwidth to the communications, such that
the completion time of a batch training iteration (CT-BTI) of
the DML jobs can be minimized.

Definition 1. We define the CT-BTI of a batch of concurrent
DML jobs as the duration from when the first job starts pulling
gradients to when the last job finishes its parameter update,
for one training iteration of all the jobs.

Note that, the ultimate goal of the DML job scheduling
should be to minimize the longest JCT of DML jobs, for
effectively accelerating their training. As we schedule a batch
of concurrent jobs together, this ultimate goal can be approx-
imated as to minimize the CT-BTI of the jobs if we consider
a reasonable assumption that each job will be trained in a
relatively large number of iterations and the total training
iterations of all the jobs are very similar. Moreover, we only
need to consider the durations of pull gradients and parameter
update for each job in the CT-BTI for the following reason.
As the steps of pull/push gradients are symmetric in terms
of data transfers, the bandwidth allocations for them can
be determined similarly. Consequently, the durations of the
pull/push gradients of each job will be the same, allowing
us to just minimize one of them in the optimization for job
scheduling. Then, to facilitate the DML job scheduling to
minimize CT-BTI, we model P4INC-AOI as a discrete-time
system that operates on time-slots (TS’).

Definition 2. Each TS lasts for ∆t, being the time granularity
for job scheduling and AOI reconfiguration in P4INC-AOI.

As such, the system time becomes t ∈ {0, · · · , i·∆t, · · · , T ·
∆t}, where i is the index of each TS and T is its maximum.
The scheduling scheme of DML jobs and AOI configuration
can only be adjusted at the beginning of each TS.

B. MILP Model
We formulate the following MILP model to describe the

optimization for scheduling DML jobs in P4INC-AOI.
Notations:
• V : Set of network units in an ODCN based on P4INC-

AOI, where each network unit v ∈ V consists of a PDP
switch and a server pool.

• J : Set of DML jobs, each of which contains a PS and
a number of workers. For each job j ∈ J , the locations
of its PS and workers, its arrival TS, and the volume of
data to transmit during pull gradient are all known.

• NINC,v: INC capacity of PDP switch v ∈ V , in terms of
the number of DML jobs.

• BPDP,v: Bandwidth capacity of PDP switch v.
• Poxc,v: Number of optical ports on PDP switch v to AOI.
• Bport: Bandwidth capacity of each optical port to AOI.
• ε: Time needed for an AOI reconfiguration2.

2As reconfiguring an OXC in AOI interrupts the inter-unit traffic through the
affected ports for an unignorable duration, we consider it in the optimization
and assume that if AOI needs to be reconfigured by the end of a TS, data will
not be transmitted until the reconfiguration has been done in the next TS.

6

• W j
v : Number of workers of job j ∈ J in server pool v.

• Ljv: Boolean parameter that equals 1 if any worker(s) of
job j locate in server pool v ∈ V , and 0 otherwise.

• Ejv: Boolean parameter that equals 1 if all workers of job
j locate in server pool v ∈ V , and 0 otherwise.

• PSjv: Boolean parameter that equals 1 if PS of job j
locate in server pool v, and 0 otherwise.

• d̃j : Data volume of each worker for job j, which is
generally predictable or can be measured in prior [57].

• aj : Time for parameter update (in TS’) if job j uses its
PS in a server pool (when it is not assigned to use INC).

• ∆t: Duration of a TS.
• T : Maximum index of TS, i.e., the longest look-ahead

time for DML job scheduling.
• T : Set of feasible durations in TS’ for job scheduling,

e.g., T = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} if we
have T = 3. This set is introduced to ensure that the data
transfer of each job runs continuously until finished (it is
always assigned to a duration τ ∈ T).

• f iτ : Boolean parameter that equals 1 if TS i is include in
duration τ , and 0 otherwise.

• m/M : A small/large positive constant.
Variables:
• kjv: Boolean variable that equals 1 if job j is assigned to

use INC in unit v, and 0 otherwise.
• Dj,i

v,u: Volume of data that still needs to be sent between
v and u for job j at TS i ∈ [0, T].

• Bj,iv,u: Bandwidth assigned to job j between v and u in
TS i.

• ∆Bj,iv,u: Change on bandwidth allocated to job j between
v and u from TS’ i− 1 to i.

• Bij : Bandwidth allocated to each worker of job j for pull
gradients at TS i. We assume that the all the workers of
a job send/receive data to/from their PS at the same data-
rate for synchronized training [39], regardless where the
workers locate (i.e., in the same network unit or not).

• P iv,u: Number of ports through AOI that are allocated to
traffic between v and u in TS i.

• ∆P iv,u: Change on number of ports through AOI for
traffic between v and u from TS’ i− 1 to i.

• tj : Iteration completion time (ICT) of job j.
• zτj : Boolean variable that equals 1 if job j uses duration
τ for data transfer, and 0 otherwise.

• xij : Boolean variable that equals 1 if job j uses TS i for
data transfer, and 0 otherwise. (xij =

∑
τ∈T z

τ
j f

i
τ).

• αiv,u: Boolean variable that equals 1 if the number of
connections through AOI for traffic between v and u
increases from TS i− 1 to TS i, and 0 otherwise.

• βj,iv,u: Boolean variable that equals 1 if the bandwidth
allocated to job j between v and u increases from TS’
i− 1 to TS i, and 0 otherwise.

Objective:
The optimization objective is to minimize the CT-BTI of all

the concurrent jobs in J .

Minimize max{tj},∀j ∈ J. (1)

Constraints:

1) INC Resource-related Constraints:{
kjv ≤ Ljv,
0 ≤

∑
v∈V

kjv ≤ 1, ∀j ∈ J (2)

Eq. (2) ensures that global gradient aggregation for job j
is performed correctly. Specifically, job j can only use INC
resources from the unit where its workers are located, and
aggregation must be conducted on a single unit.∑

j∈J

kjv · xij ≤ NINC,v, ∀v ∈ V, ∀i ∈ T. (3)

Eq. (3) ensures that the number of jobs, which are assigned
to use INC in each PDP switch at each TS, cannot exceed the
INC capacity of the PDP switch.

2) Link Capacity-related Constraints:{
Bj,iv,u = [kjv · (1− Ejv) + (1− kjv) ·W j

v] · PSju ·Bij · xij ,
Bj,iv,v = [kjv · Ejv + (1− kjv · Ejv) · PSjv] ·W j

v ·Bij · xij ,
{v, u : v, u ∈ V, v 6= u}, ∀j, i.

(4)

Eq. (4) determines the correct bandwidth allocation for each
job in TS i based on the INC usage and the number and
location of its workers and PS.∑

j∈J

[
W j
v ·Bij +

∑
u

Bj,iu,v + (1− kjv) ·W j
v · PSjv ·Bij

]
· xij

≤ BPDP,v, {v, u : v, u ∈ V, v 6= u}, ∀v, i.

(5)

Eq. (5) ensures that the total bandwidth allocated to jobs in
each unit does not exceed the switch capacity in any TS.

3) AOI Port and Reconfiguration-related Constraints:
P iv,u = P iu,v, P

i
v,v = 0,∑

j∈J
(Bj,iv,u +Bj,iu,v) ≤ P iv,u ·Bport,∑

u

P iv,u ≤ Poxc,v,

{v, u : v, u ∈ V, v 6= u}, ∀i.

(6)

Eq. (6) enforces that the connections established between units
u and v are bidirectional, and that the number of ports used by
the connections will not exceed the corresponding port count.

∆P iv,u = P iv,u − P i−1
v,u ,

αiv,u ·∆P iv,u ≥ 0,

∆P iv,u + 1 ≤M · αiv,u,
{v, u : v, u ∈ V, v 6= u},∀i ∈ [1, T], j.

(7)

Eq. (7) determines the values of Boolean variables {αiv,u} cor-
rectly. Specifically, it sets αiv,u = 1 if an AOI reconfiguration
should be triggered in TS i to adapt to the connection increase
between units v and u, otherwise, αiv,u remains as 0.

4) Job Execution-related Constraints:{
Dj,0
v,u = [kjv · (1− Ejv) + (1− kjv) ·W j

v] · PSju · d̃j ,
Dj,0
v,v = [kjv · Ejv + (1− kjv · Ejv) · PSjv] ·W j

v · d̃j ,
{v, u : v, u ∈ V, v 6= u}, ∀j.

(8)

Eq. (8) obtains the initial data volume of job j based on the
INC usage and number and location of its workers and PS.

∆Bj,iv,u = Bj,iv,u −Bj,i−1
v,u ,

βj,iv,u ·∆Bj,iv,u ≥ 0,

∆Bj,iv,u ≤M · βj,iv,u,
{v, u : v, u ∈ V, v 6= u}, ∀i ∈ [1, T], j.

(9)

7

Eq. (9) decides the values of Boolean variables {βj,iv,u}, by
setting βj,iv,u = 1 if job j from unit v to unit u requires
additional bandwidth in TS i, and 0 otherwise.{
Dj,i+1
v,u = max

(
0, Dj,i

v,u −Bj,iv,u ·∆t+ ∆Bj,iv,u · βj,iv,u · αj,iv,u · ε
)
,

Dj,T
v,u = 0,

{v, u : v, u ∈ V }, ∀i ∈ [0, T − 1], j.
(10)

Eq. (10) sets the remaining data volume of each job (the values
of variables {Dj,i+1

v,u }), where we account for the interruption
due to reconfiguration with the last term of the first formula
(i.e., a bandwidth penalty of time ε) and use the second one
to enforce all the jobs to be completed by the last TS.
∑
τ∈T

zτj = 1,

tj = max
i

(
i · xij

)
∆t+ aj

[(
1−

∑
v

kjv

)
+
∑
v

kjv

(
1−

∑
v

Ejv

)]
,

∀j ∈ J.
(11)

Eq. (11) ensures that each job is assigned only one duration
τ ∈ T for communication. The term max

i∈τ
{i · xij} represents

the elapsed time since the first TS, while the subsequent term
measures the parameter update time. As noted in Section IV-A,
the parameter update time is assumed to be 0 if a job uses INC.

Note that, Eqs. (3)-(11) are nonlinear because they contain
multiplications of variables. They can be linearized using the
standard procedures detailed in Appendix A.

Theorem 1. The optimization for scheduling DML jobs in
P4INC-AOI (described by the MILP above) is NP-hard.

Proof: We prove the NP-hardness of the optimization by
reducing it into the general case of a problem that is known to
be NP-hard [58]. Specifically, we first obtain a special case
of the optimization by 1) making all the DML jobs arrive at
t = 0, and 2) forcing {NINC,v = 0, ∀v ∈ V } to disable INC
on all the PDP switches. Then, we can aggregate the volumes
of data to be transferred in the pull gradients step of all the
jobs to get a demand matrix D|V |×|V |, where each element
in it indicates the data size of the flow between a pair of
network units. Consequently, the optimization for scheduling
DML jobs becomes to minimize the longest completion time
of flows in D|V |×|V | with AOI reconfigurations in the ODCN.
This is equivalent to the general case of circuit scheduling for
one Coflow demand, and it is known that this problem is NP-
hard as long as we have non-zero AOI reconfiguration latency
(i.e., ε > 0) [59]. Therefore, we prove the NP-hardness of
the original problem, as the reduced problem is NP-hard.

V. ALGORITHM DESIGN FOR DML JOB SCHEDULING

Since the problem of DML job scheduling is NP-hard,
it would become intractable to find its exact solution by
solving the MILP formulated in the previous section, when
the problem size is relatively large. Hence, in this section,
we propose a polynomial-time heuristic to solve it quickly.
Specifically, the heuristic decomposes the original scheduling
problem into a few smaller subproblems, each of which covers
the job scheduling in a small time window of the overall look-
ahead time ([0, T ·∆t]), and gradually solves the subproblems.

A. Overall Procedure

Algorithm 1 shows the overall procedure of our proposed
heuristic for scheduling DML jobs in P4INC-AOI. Line 1 is
for the initialization. The for-loop of Lines 2-12 handles the
job scheduling in iterations, each of which corresponds to a
TS. In each iteration, we first update the set of unfinished
jobs J and recycle the resources (i.e., bandwidth and INC
resources) allocated to completed jobs (Lines 3-4). Then, Line
5 uses Algorithm 2 to obtain the schemes of bandwidth and
INC allocation for each unfinished job in J in the current TS,
and denotes them with {Bj,iv,u} and {kjv}. Next, we determine
whether an AOI reconfiguration is necessary (i.e., if new
connection(s) need to be set up between any pair of network
units), invoke the required AOI reconfiguration, and run jobs
according to {Bj,iv,u} and {kjv} for a TS (Line 6). Lines 7-
11 check each job in J and get its ICT if it is completed.
Finally, after all the TS’ in the overall look-ahead time have
been processed, we return the CT-BTI in Line 13.

Algorithm 1: Overall Procedure for Scheduling DML Jobs
1 J = ∅;
2 for each i ∈ [0, T] do
3 remove completed jobs from J and reset their resource

allocation to 0;
4 insert newly-arrived jobs in J ;
5 apply Algorithm 2 to get {Bj,iv,u} and {kjv};
6 reconfigure AOI if necessary and run jobs in J according

to {Bj,iv,u} and {kjv} for ∆t;
7 for each job j ∈ J do
8 if job j is completed then
9 get tj based on Equation (11);

10 end
11 end
12 end
13 return tmax = max

j∈J
(tj);

B. Resource Allocation in each TS

Algorithm 2 describes the procedure of updating the re-
source allocation scheme of each job in a TS. The for-loop of
Lines 2-14 allocates INC resources to jobs with more inter-unit
traffic to cut down inter-unit traffic, which, in turn, implicitly
reduces AOI reconfigurations. This allocation can be effective-
ly solved by leveraging the weighted bipartite matching. Then,
Line 15 updates the remaining volumes of data transfers in
{Dj,i

v,u} according to the flags for INC assignments ({kjv}).
Next, we abstract the PDP switch’s physical ports in each

network unit as one virtual port for the server pool and another
for the AOI. Line 16 inputs {Dj,i

v,u} and {kjv} to Algorithm 3
to get the ideal active window in TS’ for the usage of each
virtual port and sorts them in the descending order of the
end time of their windows to prioritize bandwidth allocation
to the most time-consuming traffic for minimizing the overall
transmission time. The for-loop of Lines 17-32 tries to adjust
the bandwidth allocation of each port in the sorted order to
minimize the CT-BTI of jobs. Specifically, we first put all the
jobs that are related to virtual port p in set Jp (Line 18), and
iteratively increase the bandwidth allocation for jobs in Jp by

8

a granularity of δB until no more bandwidth can be allocated
(Lines 17-29). The for-loop of Lines 20-28 analyzes each job
in Jp to check whether an increase in bandwidth allocation to
each of its workers can be accommodated without violating
current bandwidth constraints or can be realized by invoking
a feasible AOI reconfiguration. If feasible, we record the ICT
of the job after applying the related network changes (Lines
22-24). Otherwise, we remove the job from Jp (Line 26). Line
29 finds the job whose projected ICT with bandwidth change
is the longest and commits its bandwidth change, and Lines
30 updates the network status accordingly. Finally, Line 33
returns the resource allocation schemes ({Bj,iv,u} and {kjv}).

Algorithm 2: Resource Allocation for DML Jobs in a TS

1 get the initial traffic matrix D̃|V×J| and create bipartite graph
with units V and jobs J with weight d̃v,j ;

2 for i = 1 to max
(
ÑINC,v

)
do

3 run weighted bipartite matching algorithm on D̃;
4 for each matched edge (v, j) ∈ D̃ do
5 if ÑINC,v > 0 then
6 assign job j to use INC in unit v;
7 kjv = 1;
8 remove job j from J ;
9 get remaining INC resources in v as ÑINC,v;

10 else
11 remove unit v from V ;
12 end
13 end
14 end
15 update {Dj,i

v,u} based on {kjv};
16 input {Dj,i

v,u} and {kjv} to Algorithm 3 to get the ideal active
window for each virtual port and sort them in descending order
of their window end time;

17 for each virtual port p in sorted order do
18 put jobs in J related to this port to set Jp;
19 while Jp 6= ∅ do
20 for each job j ∈ Jp do
21 increase bandwidth allocation to each worker of

job j by δB hypothetically;
22 if the bandwidth change is feasible based on

current status of ODCN then
23 get tj for job j after bandwidth change;
24 record bandwidth change and related AOI

reconfiguration for j, if necessary;
25 else
26 remove job j from Jp;
27 end
28 end
29 find the job j∗ with the longest ICT tj∗ and commit

corresponding bandwidth change;
30 update network status to record in {Bj,iv,u};
31 end
32 end
33 return {Bj,iv,u} and {kjv};

C. Estimation of Ideal Active Window for each Virtual Port

Algorithm 3 estimates the ideal active window of each
virtual port in the ODCN. The active window of each port
p should be determined based on the jobs that will use it to
transmit data. However, as the jobs can use INC or not and we

need to shorten the longest one of them, their steps of both pull
gradients and parameter update need to be considered when
allocating bandwidth to them and determining active windows
of their ports. For instance, if an INC job shares one port with
a non-INC job, we should allocate more bandwidth to the
non-INC job to make the two jobs complete simultaneously
(i.e., shortening their ICTs) because the parameter update of
the non-INC job takes time. Since many factors can affect
the ideal active window of each port, it cannot be calculated
precisely. Hence, we design Algorithm 3 to estimate the lower-
bound of the completion time of each window.

Algorithm 3 uses the for-loop of Lines 1-16 to estimate the
active window of each port. In each iteration, Lines 2-4 are
for the initialization to get the parameters of a port p, i.e., the
total data to transmit, related jobs, and average data transfer
time. We then check all the related jobs to find non-INC jobs
in them and get the longest parameter update time of them
(Line 5), and the activate window range of the related jobs is
obtained accordingly in Line 6. Next, Lines 7-14 use binary
search to narrow the range according to a preset threshold tth
until the capacity of port p is fully utilized to minimize the
completion time of its active window. Finally, the ideal active
window of port p is obtained in Line 15.

Algorithm 3: Getting Ideal Active Window of each Port
1 for each virtual port p in ODCN do
2 calculate total data transfer through port p as Dp based on

{Dj,i
v,u} and {kjv};

3 put jobs related to p in set Jp and get total data volume of
each job j ∈ Jp through p to put in Dp,j ;

4 get average data transfer time τ̄p on port p based on Dp
and the capacity of p;

5 find longest parameter update time τĵ of jobs in Jp;
6 set the window range of virtual port p as

[t0, t1] = [τ̄p, τ̄p + τĵ];
7 while t1 − t0 ≥ tth do
8 t̄ = t1+t0

2
;

9 if Bport,p ≥
∑
j∈JP

Dp,j

t0−τj
then

10 t1 = t̄;
11 else
12 t0 = t̄;
13 end
14 end
15 set the ideal time window of port p as from now (the i-th

TS) to t1;
16 end
17 return ideal time windows of virtual ports in ODCN;

D. Complexity Analysis

The time complexity of our proposed heuristic can be
analyzed as follows. As for Algorithm 1, its complexity mainly
comes from Algorithm 2, which consists of three major parts.
The first part (Lines 1-14) handles the allocation of INC
resources, and its complexity is O(|V | · |J |2). The second part
(Lines 15-16) uses Algorithm 3, which has a complexity of
O(|V | · |J | · log2(

τĵ
tth

)), to get the ideal active window for
each virtual port in the ODCN, and thus its complexity is
O(|V | · |J | · log2(| τĵtth |) + |V | · log2(|V |)). The last part (Lines

9

17-32) iteratively allocates bandwidth to the jobs that use each
port, and its complexity is O(|J | · BδB + |J|

2

|V |). Thus, the overall
complexity of Algorithm 2 is O(|V | · |J |2 + |V | · log2(|V |)).

VI. SYSTEM IMPLEMENTATION OF P4INC-AOI

In this section, we explain the system design and imple-
mentation of the data plane of P4INC-AOI.

A. Design Considerations of Data Plane

There are a few approaches in the literature on accelerating
DML training with INC in PDP switches (e.g., ATP [39]
and GRID [54]). Note that, they do not offload the PS of
a DML job completely, but still keep certain part of the
PS on a server. Specifically, for a DML job, these existing
approaches make PDP switch(es) collect gradients from the
workers, aggregate the gradients with INC, and forward the
results to the PS, and finally, the PS returns the aggregated
gradients to the workers. This design, however, cannot fully
explore the mutual benefits of INC and AOI, because the
communications between PS’ and PDP switches might require
connections through AOI, restricting the flexibility of AOI
reconfiguration. Hence, we design the INC part of P4INC-
AOI by extending the ATP in [39] to fully offload the PS of a
DML job to one PDP switch (i.e., the switch directly returns
aggregated gradients to workers in each training iteration), thus
the communications between PS and PDP switch and between
PS and workers are avoided completely, providing P4INC-AOI
enhanced flexibility to orchestrate INC and AOI.

In addition to replacing PS completely, we make P4INC-
AOI only enable INC for a job if all of its workers locate in
the same network unit (i.e., only the single-layer aggregation
for local jobs is allowed). The rationale behind this decision
is three-fold. First, multi-layer aggregation across units com-
plicates the traffic routing and INC management of each job,
and the induced multi-hop routing can make the latencies to
workers unequal, restricting the performance of synchronous
training. Second, multi-layer aggregation generates traffic that
needs to go through AOI and thus is susceptible to AOI
reconfiguration. Specifically, AOI reconfiguration can cause
packet losses, resulting in switch memory being indefinitely
occupied by certain packets with only partial gradients. This
can severely degrade INC performance. Third, recent studies
have suggested that the majority of DML workloads (e.g., over
99%) use no more than 32 GPUs [60], which is a relatively
small number considering that a unit can easily accommodate
hundreds of GPUs. This makes it possible that most of the
DML workloads can be placed within single units.

We adopt the BytePS framework [10] for each DML job,
where the PS in server or PDP switch only handles gradient
aggregation and the parameter update is taken care of by the
workers. Then, the steps of pull and push gradients can be
processed in parallel by leveraging duplex communications.

B. INC for Gradient Aggregation

A Tofino-based PDP switch contains multiple stages, each
of which has isolated memory for packet processing. The

switch processes packets in the pipeline manner, and thus
registers in the same stage cannot be operated on more than
once. Therefore, we abstract the switch memory as an array
of aggregators. As shown in Fig. 4, aggregator-i uses the i-th
registers in all the stages to process a gradient packet. Then,
the size of each aggregator is limited by the number of stage in
a switch, and it is far less than the size of a gradient generated
in each training iteration. Hence, we need to partition each
gradient into fragments according to the size of an aggregator,
and encapsulate them in multiple packets,

Worker Gradient Push: We design the following fields in
the header of a gradient packet: Service ID, Job ID, Worker ID,
Fragment ID, and Index, where Service ID indicates whether
the packet belongs to an INC job or not and helps a switch
determine how to process it accordingly, Job ID identifies
each DML job, Worker ID tells which worker of a job that
the packet is for, Fragment ID is the index of the gradient
fragment in the packet, and Index points to the aggregator that
should be used to process the packet. We use an independent
sliding window to control the packet transmission rate of each
worker, which allows to send a new gradient packet after the
aggregated result of the previous packet has been received.

As shown in Fig. 4, the aggregators in a switch are arranged
in non-overlapping aggregator segments, each of which is
labeled with its offset and size (i.e., denoting as <MemID,
Size>). Before starting an INC job, its job scheduler assigns an
aggregator segment in one PDP switch to it (i.e., selecting the
tuple of <MemID, Size> for it), according to the instruction
from the network controller, to avoid inter-job collisions. Then,
in runtime, a worker finds the aggregator for each packet
from it by hashing the packet’s Job ID and Fragment ID and
combining the result with the MemID and Size of its job’s
aggregator segment, and encodes the selected aggregator in
Index of the packet. Since each packet needs to be hash-
indexed to an aggregator, intra-job collisions may occur, which
can be easily avoided by each worker with preprocessing (i.e.,
if a worker detects a collision when assigning an aggregator to
a packet, it can redirect the packet to another one). In short,
our design lets each worker use deterministic addressing to
map packets to aggregators based on combinations of their
Job IDs and Fragment IDs, ensuring that correct aggregation
can be realized in each PDP switch. Moreover, this approach
also frees up the switches from hash handling, allowing them
to process more gradient aggregations with higher throughput.

Switch Gradient Aggregation: When processing each
gradient packet, a PDP switch allocates an aggregator to the
packet according to its Index field and records its Fragment
ID and Worker ID. If the corresponding aggregator is empty,
the switch stores the gradient value of the packet and drops
it. Otherwise, it compares the Fragment ID with that in the
aggregator. If the two Fragment IDs match, the switch adds
the gradient value of the packet to that in the aggregator and
increments the worker-count there. Then, if the worker-count
equals the number of workers in the job, the aggregator knows
that it has summed the gradients from all the workers. It then
broadcast the fully aggregated gradient to the workers and
reset its registers for subsequent packets. If the worker-count
is less than the total number of workers, the aggregator sends

10

Fig. 4. Data plane design for INC to realize gradient aggregation.

partial aggregation result to the PS. The PS completes the
full aggregation and returns the final result, after which the
aggregator resets its register. Note that, if the two Fragment
IDs do not match, an asynchronous error occurs.

Error Control: An asynchronous error happens when
packet(s) with a greater Fragment ID arrive at a PDP switch
while the designated aggregator still has not received all the
gradients with the current Fragment ID. The switch then flags
the error by marking explicit congestion notification (ECN) in
a packet, and broadcasts it to all the workers that have sent in
packets with incorrect Fragment IDs, to let them adjust their
gradient transmission rates to prevent asynchronous arrivals
of gradient fragments in the future. In this work, we make
each worker use the additive increase multiplicative decrease
(AIMD) algorithm [39] to adjust its sliding window size.
The AIMD algorithm works as follows. At the beginning,
each worker maintains the same initial window size. Then,
when it receives a packet for aggregated gradient, it increases
its window size by one maximum transmission unit (MTU)
until reaching a threshold, which was set according to the
aggregators and bandwidth allocated to the worker’s job and
the round-trip time (RTT) between the workers and the switch.
Upon receiving an ECN-marked packet, the worker reduces its
window size by half and updates the threshold accordingly.

In addition to asynchronous errors, packet losses can happen
and cause errors, which can make aggregators wait indefinitely.
To address this issue, we implement a retransmission mecha-
nism in workers. If a worker receives an aggregated gradient
packet whose Fragment ID is greater than what the worker
expects, it retransmits the previous gradient packet. Upon
receiving such a duplicated gradient packet, the switch will
resend the corresponding aggregated gradient to the worker.
Note that, in order to realize the retransmission mechanism,
the switch needs to retain a copy of the aggregated gradient
for each aggregator. This can be accomplished by leveraging
the shadow copy in [38], which allows a switch to retransmit
a lost aggregated gradient packet even if it has already started
reusing the related aggregator for the next gradient fragment.

VII. PERFORMANCE EVALUATION

In this section, we first give the metrics and benchmarks for
performance comparison, and then build a small-scale testbed
with Tofino-based PDP switches [51] and an OXC to evaluate
P4INC-AOI for DML training, and finally perform simulations
to test the performance of P4INC-AOI in larger scales.

A. Performance Metrics and Benchmarks

Metrics: We adopt the following metrics for performance
evaluations: 1) the number of AOI reconfigurations, 2) total
job completion time (JCT) (small-scale experiments), and 3)
the CT-BTI (large-scale simulations). The metrics are chosen
to test the mutual benefits of INC and AOI for DML training.
Specifically, the first metric is used to check how the malleable
traffic matrix shaped by INC can reduce the frequency of AOI
reconfigurations, and the second and third metrics measure the
performance of DML training in P4INC-AOI.

Benchmarks: We consider four scenarios to illustrate the
performance of P4INC-AOI and our proposed job scheduling
algorithms. In the system aspect, we adopt both P4INC-AOI
and a traditional ODCN without INC, where the traditional
ODCN uses the same hardware configuration as P4INC-AOI,
except for that we do not enable INC in it. In the algo-
rithm aspect, we consider a straightforward first-come-first-
served scheduling algorithm (FCFS) and our time-window-
based scheduling algorithm (TW). The FCFS provisions DML
jobs one by one in the sequence of their arrivals and allocates
the multi-dimensional resources in ODCN (i.e., IT resources
in server pools, memory in PDP switches (if INC is enabled),
and bandwidth on network links) to each job to shorten
their JCT/CT-BTI greedily. Then, we combine the system and
algorithm aspects to obtain the following four scenarios.
• noINC-FCFS: The traditional ODCN without INC uses

FCFS to schedule DML jobs.
• noINC-TW: The traditional ODCN without INC uses our

TW to schedule jobs.
• INC-FCFS: P4INC-AOI uses FCFS to schedule jobs.
• INC-TW: P4INC-AOI uses TW to schedule jobs.

B. Experimental Evaluation

Settings: We build a small-scale but realistic ODCN testbed
with off-the-shelf components. It consists of four racks, i.e.,
two GPU racks and two CPU racks, respectively. Each GPU
rack contains 4 servers, each of which is equipped with one
1080Ti GPU, one 40-Gbps Mellanox ConnectX-5 network
interface card (NIC), and two Intel 32-core CPUs at 2.2
GHz. The software environment of each server is Ubuntu
18.04 and CUDA 10.2 with Mellanox OFED 4.9-6.0.6.0 NIC
driver, and it runs PyTorch to execute the workers of DML
jobs. Each worker utilizes the distributed data parallel module
provided by PyTorch. The bandwidth increment granularity
for workers (i.e., δB in Algorithm 2) was set as 10 Gbps.

11

ResNet50ResNet101ResNet152VGG11 VGG16 VGG19
0

50

100

150

200

250

300

350

400

Tr
ai
ni
ng

 T
hr
ou

gp
ut
 (i
m
ag

es
/s
) INC

noINC

Fig. 5. Results on training throughput of DML models.

10 20 40 60
Number of Jobs

0

10

20

30

40

50

60

Re
co

nf
ig

ur
ed

 C
on

ne
c

io
ns

 in
 A

OI noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

Fig. 6. Results on AOI reconfigurations.

The ToR switch of each rack is a 32×40-Gbps Tofino-based
PDP switch with software development environment (SDE)
9.7.0. The AOI is based on a 32×32 commercial OXC,
and each of its port connects to an optical port on a ToR
switch. In the control plane, the network controller can set
up and reconfigure connections in the OXC by leveraging
the OpenFlow protocol, and install INC and routing policies
in PDP switches through Barefoot runtime interface via the
secure shell (SSH) protocol, including sending Job IDs to
distinguish INC and non-INC jobs. INC is implemented with
P4-16 runtime programs that are executed in PDP switches
using the Tofino native architecture (TNA).

As for the DML workloads, we consider a few well-known
machine learning models: ResNet50, ResNet101, ResNet152,
VGG11, VGG16, and VGG19. We first conduct experiments
to measure the performance gain achieved by INC. The DML
job of each model consists of two workers and a PS in BytePS
[10], and trains with the standard 3-channel and 224×224
pixel images generated with the function torch.rand(). The
batch size is set as 32 for all the models. We fix the duration
of a TS as 1 second, and obtain the training throughput
of each model after a warm-up. Fig. 5 shows the experi-
mental results on DML training throughput, indicating that
INC achieves 1.56×, 1.83×, 1.65×, 3.7×, 3.7×, and 3.8×
throughput improvements over the noINC cases for ResNet50,
ResNet101, ResNet152, VGG11, VGG16, and VGG19, re-
spectively. In general, the performance gains are larger for
bandwidth-intensive workloads (VGG) than for computing-
intensive workloads (ResNet). In the following experiments,
we choose VGG16 (with 528 MB model size) and ResNet50
(with 102 MB model size) to represent bandwidth-intensive
and computing-intensive DML workloads, respectively.

10 20 40 60
Number of Jobs

0

500

1000

1500

2000

Jo
bs

 C
om

pl
et
e
Ti
m
e
(s
)

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(a) ResNet50

10 20 40 60
Number of Jobs

0

1000

2000

3000

4000

5000

6000

7000

8000

Jo
bs

 C
om

pl
e

e
Ti

m
e

(s
)

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(b) VGG16 model

Fig. 7. Results of concurrent jobs in Poisson process.

Next, we evaluate the AOI reconfigurations and total JCT
of the 4 scenarios outlined in Section VII-A, with the number
of concurrent DML jobs in each experiment chosen from
{10, 20, 40, 60}. Jobs come in according to the Poisson process
with an arrival rate of one job per TS. This time, we make
each job include {2, 4} workers randomly and one PS. For
each job, it can wait in the scheduling queue before being
served, and thus the JCT of a job includes its waiting time
and training time. In each experiment, we average the results
obtained in three independent runs to get each data point.

AOI reconfigurations: We record the total number of
reconfigured connections in each experiment to reflect the
complexity of AOI reconfigurations. The results are shown in
Fig. 6, which indicate that INC-TW always reconfigures the
smallest number of AOI connections followed by noINC-TW.
As for the scenarios with FCFS, the one with INC (INC-FCFS)
reconfigures less connections than that without. These results
confirm both the effectiveness of our proposed job scheduling
algorithm and the benefit of INC. Specifically, INC can reduce
the number of reconfigured connections by 48.8% on average,
and TW reconfigures 47.5% less AOI connections over FCFS.
This suggests that P4INC-AOI with TW significantly reduces
AOI reconfigurations and mitigates the mismatch between
traffic generated by DML jobs and topology of AOI.

Total JCT: We then measure the total JCTs of DML jobs
for ResNet50 and VGG16, and plot the results in Fig. 7. When
FCFS is used, INC reduces total JCT by 33.57% and 43.96%
on average for ResNet50 and VGG16, respectively (comparing
INC-FCFS to noINC-FCFS). Our proposed job scheduling
algorithm reduces total JCT by 46.66% and 56.34% on average
for ResNet50 and VGG16, respectively (comparing INC-TW
to noINC-TW). The results also reveal that TW achieves

12

TABLE I
RESULT OF SMALL-SCALE SIMULATIONS

MILP INC-FCFS INC-TW INC-TW-NoRecon

Jobs Time
(s)

CT-BTI
(s)

AOI Time
(s)

CT-BTI
(s)

δ(%) AOI Time
(s)

CT-BTI
(s)

δ(%) AOI Time
(s)

CT-BTI
(s)

δ(%) AOI

40 84.6 3.4 1 0.6 6.0 43.3 1 0.8 4.1 17.1 1 0.7 5.1 33.3 0
50 105.3 6.9 1 0.8 11.2 38.4 1 1.0 8.2 15.9 1 0.9 9.8 29.6 0
60 357.5 14.8 1 0.9 23.8 37.8 2 1.1 17.7 16.4 2 1.0 21.7 31.8 0
80 – – – 1.3 29.9 – 5 1.5 19.8 – 4 1.4 21.7 – 0
100 – – – 1.6 31.8 – 11 2.1 26.7 – 5 1.7 30.7 – 0

800 1000 1200 1400
Number of Jobs

10

30

100

500

Re
co

nf
ig

ur
ed

 C
on

ne
c

io
ns

 in
 A

OI noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(a) AOI reconfigurations

800 1000 1200 1400
Number of Jobs

10

30

100

500

CT
-B
TI
 (s

)

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(b) CT-BTI

Fig. 8. Results of large-scale simulations (different numbers of DML jobs).

an average reduction of 12.34% in total JCT for ResNet50
and 12.7% for VGG16 in scenarios without INC (noINC-TW
versus noINC-FCFS), and an average reduction of 29.62% for
ResNet50 and 32.0% for VGG16 in scenarios with INC (INC-
TW versus INC-FCFS). Therefore, both computing-intensive
(ResNet50) and bandwidth-intensive (VGG16) jobs benefit
from our proposal of P4INC-AOI using TW.

C. Simulation Evaluation

As experiments in the small-scale ODCN testbed cannot
verify the performance of our proposal for large-scale prob-
lems, we use numerical simulations to further evaluate it. The
simulations first compare the results from our heuristic with
the exact ones from the MILP formulated in Section IV-B, to
check how the heuristic can approximate the exact solutions
for small-scale problems, and then evaluate the four heuristic
scenarios mentioned in the previous subsection.

Settings: The MILP is solved with the Gurobi solver, while
we implement the heuristic with Python, and both of them
run on a computer equipped with an Intel Core i5-10500 CPU

and 16 GB memory. As for the large-scale simulations, we
consider an ODCN with 64 units at most, each of which
contains 64 servers and a PDP aggregation switch that can
accommodate 4 jobs with INC at most. Each unit connects
to the AOI through 24 40-Gbps optical ports. To verify
that our proposed algorithms can work for multi-application
scenarios in ODCNs, we consider two types of jobs: DML
jobs and MapReduce jobs, both arriving according to a Poisson
process with an average arrival rate of 20 jobs per TS, where
TS is set to 1 second. For each DML job, the number of
workers is randomly selected from {2, 4, 8, 16} based on the
GPU request sizes of DML jobs in Philly’s trace [60]. Each
worker uniformly chooses its data size of one push step within
[102, 548] MB, emulating the parameter sizes of DML models
such as ResNet50, ResNet101, ResNet152, VGG11, VGG16,
and VGG19. The MapReduce jobs are generated using the
Facebook’s trace [61], which contains 500 MapReduce jobs
and their numbers of workers and data volumes. Same as that
in the experimental setup, we set the bandwidth increment step
for workers as 10 Gbps. Note that, the locations of workers
in each job are the inputs to our scheduling problem, and
thus for fair comparisons, we randomly place workers in each
simulation but try to place as many workers of each job in
one unit as possible, to maximize traffic localization.

Benchmarking with MILP: The results of small-scale
simulations with 8 units are shown in Table I. MILP always
provides the minimum CT-BTI and the smallest number of
AOI reconfigurations, but it is time-consuming, taking over 5
minutes to solve the scheduling for 60 jobs. The running time
of INC-FCFS and INC-TW is orders of magnitudes shorter
than that of MILP. INC-FCFS runs the fastest but its gaps
to the optimal solutions from MILP are larger than those
of INC-TW. The gaps on CT-BTI of INC-FCFS are within
[37.8%, 43.3%]. INC-TW outperforms INC-FCFS by reducing
the CT-BTI deviation from the optimal solution to within
[15.9%, 17.1%] and invoking fewer AOI reconfigurations. This
is because INC-TW prioritizes INC resources to jobs produc-
ing heavier inter-unit traffic to effectively ease contention on
AOI connections and accelerates DML training by allocating
more bandwidth to jobs with longer ICT. Moreover, to check
the effect of AOI reconfiguration on DML training, we con-
sider the approach that uses the procedure of INC-TW but
does not allow AOI reconfiguration (i.e., INC-TW-NoRecon in
Table I), and as no reconfiguration is allowed, we pre-configure
the AOI with uniform connectivity between network unit
pairs. INC-TW consistently outperforms INC-TW-NoRecon

13

200 300 400 500
Number of Job

0

20

40

60

80

100

120

140

Re
co

nf
ig
ur
ed

 C
on

ne
ct
io
n

 in
 A
OI noINC-FCFS

noINC-TW
INC-FCFS
INC-TW

(a) AOI reconfigurations

200 300 400 500
Number of Jobs

0

50

100

150

200

CT
-B
TI
 (s

)

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(b) CT-BTI

Fig. 9. Large-scale simulations for different numbers of MapReduce jobs.

in CT-BTI, and performance gap is within [9.6%, 24.4%].
This relatively significant gap justifies the necessity of AOI
reconfiguration even in small-scale ODCNs.

Performance with different numbers of jobs: Fig. 8 plots
the results on AOI reconfigurations and CT-BTI when the
number of DML jobs increases from 800 to 1, 400. INC-
TW still consistently reconfigures the fewest number of AOI
connections and delivers the shortest CT-BTI, aligning with
the experimental results in Figs. 6-7. As for all the scenarios,
INC still effectively reduces the number of AOI configurations
over those without it. Specifically, the average reductions on
AOI reconfigurations are 55.4% for INC-FCFS over noINC-
FCFS and 50.3% for INC-TW over noINC-TW. Fig. 6 also
verify the benefit of our TW algorithm, i.e., it respectively
achieves 92.8% and 91.7% reductions on AOI reconfigurations
for noINC and INC scenarios. In all, the results on AOI
reconfigurations confirm the advantage of symbiosis of INC
and our TW algorithm. Meanwhile, it is interesting to notice
that different from the JCT results in Fig. 7, the CT-BTI of
INC-FCFS is longer than that of noINC-TW. This suggests
that for large-scale problems, the benefit of our TW algorithm
on reducing JCT becomes more significant. Our TW algorithm
reduces the CT-BTI by on average 86.8% and 85.6% in the
noINC and INC scenarios, respectively.

Fig. 9 shows the results of AOI reconfigurations and CT-
BTI as functions of the number of MapReduce jobs. Similar to
the results for DML jobs, INC-TW consistently achieves the
fewest AOI reconfigurations and the shortest CT-BTI, demon-
strating the effectiveness of our TW algorithm in generalizing
tasks involving collective communications. On average, INC-
TW respectively reduces the number of AOI reconfigurations
and CT-BTI by 89.5% and 72.6% over noINC-FCFS.

64 32 16 8
Number of Unit

10

30

100

500

Re
co

nf
ig
ur
ed

 C
on

ne
ct
io
n

 in
 A
OI noINC-FCFS

noINC-TW
INC-FCFS
INC-TW

(a) AOI reconfigurations

64 32 16 8
Number of Units

10

30

100

500

CT
-B
TI
 (s

)

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(b) CT-BTI

Fig. 10. Results of large-scale simulations (different numbers of units).

Performance with different ODCN scales: Fig. 10 shows
the results for ODCNs with different numbers of units when
the number of DML jobs is fixed as 1, 000. We find that as
the scale of the ODCN increases, both the AOI reconfigu-
rations and the CT-BTI decrease for each scheme. This is
because a larger-scale ODCN has more INC and bandwidth
resources, making DML scheduling easier. noINC-TW con-
sistently outperforms INC-FCFS. Once again, this suggests
that the benefits of our TW algorithm on reducing AOI
reconfigurations and CT-BTI become more significant as the
problem scale increases. Overall, INC-TW achieves the lowest
AOI reconfigurations compared to other three approaches.

Performance with different INC capacities: Fig. 11 il-
lustrates the impact of INC capacity of PDP switches on
the performance of P4INC-AOI. As for the scenarios without
INC, it is easy to understand that changing INC capacity will
not affect the results on AOI reconfigurations or CT-BTI. For
INC-FCFS and INC-TW, both AOI reconfigurations and CT-
BTI decrease with INC capacity, as larger INC capacity eases
the scheduling of DML jobs. The performance gain almost
diminishes as we further increase INC capacity (i.e., beyond
8) because bandwidth bottlenecks turn to the major constraint.

Performance with different TS lengths: Finally, we ex-
plore the impact of the length of TS on the performance of
DML job scheduling, and Fig. 12 shows the results. In Fig.
12(a), AOI reconfigurations first decrease and then converge as
TS length increases. However, a longer TS length results in a
longer CT-BTI across all the four scenarios, due to the coarser
job scheduling that can reduce resource utilization in TS’.
Meanwhile, for noINC-TW and INC-TW, the increases on CT-
BTI are much smaller than those of noINC-FCFS and INC-
FCFS. Hence, our TW algorithm provides a better opportunity

14

2 4 6 8 10
INC Capac ty per PDP Sw tch (Jobs)

10

30

100

300

Re
co

nf
ig

ur
ed

 C
on

ne
ct

io
ns

 in
 A

OI noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(a) AOI reconfigurations

2 4 6 8 10
INC Capacity per PDP Switch (Job)

10

20

100

300

CT
-B
TI
 (

)

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(b) CT-BTI

Fig. 11. Results of large-scale simulations (different INC capacities).

to properly balance the tradeoff between AOI reconfigurations
and the CT-BTI by changing TS length.

VIII. CONCLUSION

In this paper, we proposed P4INC-AOI, which is an ODCN
framework empowered by INC using the off-the-shelf PDP
switches based on Tofino ASICs. P4INC-AOI jointly leverages
innovations in the control and data planes to accelerate training
of DML jobs as well as to reshape/absorb inter-rack/pod traffic
for minimizing AOI reconfigurations in an ODCN. We first
proposed the algorithms (i.e., an MILP model and a time-
efficient heuristic), with which the control plane can effectively
orchestrate INC and AOI to schedule DML jobs efficiently.
Then, we designed a gradient aggregation principle to mitigate
the synchronization errors caused by traffic congestion or
switch resource conflicts in the data plane. The performance of
P4INC-AOI was validated with both small-scale experiments
and large-scale simulations. The results showed that P4INC-
AOI achieved significant reductions in JCT and AOI reconfig-
urations when scheduling concurrent DML jobs.

ACKNOWLEDGMENTS

This work was supported by the NSFC project 62371432.

APPENDIX A
LINEARIZATION METHOD

In this appendix, we describe the methods used to linearize
the nonlinear constraints in the MILP (i.e., Eqs. (3)-(11)).

The multiplication of Boolean variables a and b, denoted
by z = a · b, can be linearized using the following constraints.{

z ≤ a, z ≤ b,
z ≥ a+ b− 1.

(12)

1 3 5 7 9 11 13 15
 Length of a TS ()

10

30

100

300

Re
co

nf
ig
ur
ed

 C
on

ne
ct
io
n

 in
 A
OI

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(a) AOI reconfigurations

1 3 5 7 9 11 13 15
 Length of a TS (s)

10

30

100

1000

CT
-B
TI
 (s

)

noINC-FCFS
noINC-TW
INC-FCFS
INC-TW

(b) CT-BTI

Fig. 12. Results of large-scale simulations (different TS lengths).

The multiplication of Boolean variable a and real vari-
able b, denoted by z = a · b, can be linearized using Eq. (13),
where M is a sufficiently large positive constant.{

−aM ≤ z ≤ aM,

b− (1− a)M ≤ z ≤ b+ (1− a)M.
(13)

The Max operation z = max(a, b), where a and b are
real variables, can be linearized by introducing two auxiliary
variables u and v and imposing the following constraints.

z ≥ a, z ≥ b,
z ≤ a+M(1− u), z ≤ b+M(1− v),

u+ v ≥ 1.

(14)

Similarly, the Min operation z = min(a, b) can be replaced
by the following linear equations.

z ≤ a, z ≤ b,
z ≥ a+M(1− u), z ≥ b+M(1− v),

u+ v ≥ 1.

(15)

The above methods can be concatenated or nested to cope
with more complex scenarios, e.g., linearizing z = b

∏
i

ai.

REFERENCES

[1] Y. Gong et al., “A survey on dataset quality in machine learning,” Inf.
Softw. Technol., vol. 162, p. 107268, Oct. 2023.

[2] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[3] K. Cooper, “OpenAI GPT-3: Everything you need to know [Updated],”
Sept. 2023. [Online]. Available: https://www.springboard.com/blog/
data-science/machine-learning-gpt-3-open-ai/.

[4] J. Dean et al., “Large scale distributed deep networks,” in Proc. of
NeurIPS 2012, pp. 1223–1231, Dec. 2012.

15

[5] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. of OSDI 2016, pp. 265–283, Nov. 2016.

[6] P. Moritz et al., “Ray: a distributed framework for emerging AI appli-
cations,” in Proc. of OSDI 2018, pp. 561–577, Oct. 2018.

[7] Z. Tang et al., “Communication-efficient distributed deep learning: A
comprehensive survey,” arXiv preprint arXiv:2003.06307, Mar. 2020.
[Online]. Available: https://arxiv.org/abs/2003.06307.

[8] H. Zhang et al., “Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters,” in Proc. of USENIX ATC
2017, pp. 181–193, Jun. 2017.

[9] L. Luo et al., “Parameter hub: a rack-scale parameter server for
distributed deep neural network training,” in Proc. of ACM SoCC 2018,
pp. 41–54, Oct. 2018.

[10] Y. Jiang et al., “A unified architecture for accelerating distributed DNN
training in heterogeneous GPU/CPU clusters,” in Proc. of OSDI 2020,
pp. 463–479, Nov. 2020.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. of ACM SIGCOMM 2008, pp. 1–
12, Aug. 2008.

[12] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[13] P. Lu and Z. Zhu, “Data-oriented task scheduling in fixed- and flexible-
grid multilayer inter-DC optical networks: A comparison study,” J.
Lightw. Technol., vol. 35, pp. 5335–5346, Dec. 2017.

[14] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[15] M. Zhang et al., “Gemini: Practical reconfigurable datacenter networks
with topology and traffic engineering,” arXiv preprint arXiv:2110.08374,
Oct. 2021. [Online]. Available: https://arxiv.org/abs/2110.08374.

[16] A. Greenberg et al., “VL2: a scalable and flexible data center network,”
in Prof. of ACM SIGCOMM 2009, pp. 51–62, Aug. 2009.

[17] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, 2019.

[18] N. Jouppi et al., “TPU v4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings,” in Proc.
of ISCA 2023, pp. 1–14, Jun. 2023.

[19] N. Farrington et al., “Helios: A hybrid electrical/optical switch architec-
ture for modular data centers,” in Proc. of ACM SIGCOMM 2010, pp.
339–350, Aug. 2010.

[20] K. Chen et al., “OSA: An optical switching architecture for data cen-
ter networks with unprecedented flexibility,” IEEE/ACM Trans. Netw.,
vol. 22, pp. 498–511, Mar. 2013.

[21] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[22] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[23] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[24] W. Lu, Z. Zhu, and B. Mukherjee, “On hybrid IR and AR service
provisioning in elastic optical networks,” J. Lightw. Technol., vol. 33,
pp. 4659–4669, Nov. 2015.

[25] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[26] J. Zerwas, W. Kellerer, and A. Blenk, “What you need to know about
optical circuit reconfigurations in datacenter networks,” in Proc. of ITC
2021, pp. 1–9, Aug./Sept. 2021.

[27] H. Liu et al., “Lightwave Fabrics: At-scale optical circuit switching for
datacenter and machine learning systems,” in Proc. of ACM SIGCOMM
2023, pp. 499–515, Aug. 2023.

[28] G. Porter et al., “Integrating microsecond circuit switching into the data
center,” in Proc. of ACM SIGCOMM 2013, pp. 447–458, Aug. 2013.

[29] H. Ballani et al., “Sirius: A flat datacenter network with nanosecond
optical switching,” in Proc. of ACM SIGCOMM 2020, pp. 782–797, Jul.
2020.

[30] X. Xiao et al., “Silicon photonic Flex-LIONS for bandwidth-
reconfigurable optical interconnects,” J. Sel. Top. Quantum Electron.,
vol. 26, p. 3700210, Mar./Apr. 2020.

[31] L. Poutievski et al., “Jupiter evolving: Transforming Google’s datacenter
network via optical circuit switches and software-defined networking,”
in Proc. of ACM SIGCOMM 2022, pp. 66–85, Aug. 2022.

[32] S. Zhao, P. Cao, and X. Wang, “Understanding the performance guaran-
tee of physical topology design for optical circuit switched data centers,”
Proc. ACM Meas. Anal. Comput. Syst., vol. 5, pp. 1–24, Mar. 2021.

[33] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[34] N. Zilberman, “In-network computing,” Apr. 2019. [Online]. Available:
https://www.sigarch.org/in-network-computing-draft/.

[35] X. Xie, H. Yang, and Z. Zhu, “P4INC-AOI: When in-network comput-
ing meets all-optical interconnect for adaptive and low-latency optical
DCN,” in Proc. of OFC 2023, pp. 1–3, Mar. 2023.

[36] L. Liu et al., “Online job scheduling for distributed machine learning in
optical circuit switch networks,” Knowl-Based Syst., vol. 201-202, pp.
106 002–106 015, Aug. 2020.

[37] H. Wang, Z. Liu, and H. Shen, “Job scheduling for large-scale machine
learning clusters,” in Proc. of CoNEXT 2020, pp. 108–120, Nov. 2020.

[38] A. Sapio et al., “Scaling distributed machine learning with in-network
aggregation,” in Proc. of NSDI 2021, pp. 785–808, Apr. 2021.

[39] C. Lao et al., “ATP: In-network aggregation for multi-tenant learning,”
in Proc. of NSDI 2021, pp. 741–761, Apr. 2021.

[40] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized stochastic
gradient descent,” in Proc. of NeurIPS 2010, pp. 1–9, Dec. 2010.

[41] S. Shalev and S. Ben, Understanding Machine Learning: From Theory
to Algorithms. Cambridge University, 2014.

[42] J. Verbraeken et al., “A survey on distributed machine learning,”
arXiv preprint arXiv:1912.09789, Dec. 2019. [Online]. Available:
https://arxiv.org/abs/1912.09789.

[43] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” J. Parallel Distrib. Comput., vol. 69, pp.
117–124, Feb. 2009.

[44] J. Verbraeken et al., “A survey on distributed machine learning,” CSUR,
vol. 53, pp. 1–33, Mar. 2020.

[45] Z. Chen et al., “Rina: Enhancing ring-allreduce with in-
network aggregation in distributed model training,” arXiv preprint
arXiv:2407.19721, pp. 1–12, Jul. 2024. [Online]. Available:
https://arxiv.org/abs/2407.19721.

[46] M. Teh, S. Zhao, P. Cao, and K. Bergman, “Enabling quasi-static
reconfigurable networks with robust topology engineering,” IEEE/ACM
Trans. Netw., vol. 31, pp. 1056–1070, Jun. 2023.

[47] P. Cao et al., “Threshold-based routing-topology co-design for optical
data center,” IEEE/ACM Trans. Netw., vol. 31, pp. 2870–2885, Mar.
2023.

[48] G. Wang et al., “Domino: Eliminating communication in LLM
training via generic tensor slicing and overlapping,” arXiv preprint
arXiv:2409.15241, pp. 1–16, Sept. 2024. [Online]. Available: https:
//arxiv.org/abs/2409.15241.

[49] NetFPGA. [Online]. Available: https://netfpga.org/.
[50] J. Min et al., “Gimbal: Enabling multi-tenant storage disaggregation on

SmartNIC JBOFs,” in Proc. of ACM SIGCOMM 2021, pp. 2106–122,
Aug. 2021.

[51] Intel Tofino. [Online]. Available: https://www.intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/tofino-series.
html.

[52] R. Segal, C. Avin, and G. Scalosub, “SOAR: Minimizing network
utilization with bounded in-network computing,” in Proc. of CoNEXT
2021, pp. 16–29, Dec. 2021.

[53] N. Gebara, M. Ghobadi, and P. Costa, “In-network aggregation for
shared machine learning clusters,” in Proc. of MLSys 2021, pp. 829–
844, Mar. 2021.

[54] J. Fang et al., “GRID: Gradient routing with in-network aggregation
for distributed training,” IEEE Trans. Netw. Serv. Manag., vol. 31, pp.
2267–2280, Oct. 2023.

[55] Intel Intelligent Fabric Processors. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch.html.

[56] E. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey on P4
programmable data plane switches: Taxonomy, applications, challenges,
and future trends,” IEEE Access, vol. 9, pp. 87 094–87 155, Jun. 2021.

[57] Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling
in Large-Scale heterogeneous GPU clusters,” in Proc. of NSDI 2022,
pp. 945–960, Apr. 2022.

[58] M. Garey and D. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness. W. H. Freeman and Co. New York, 1979.

[59] X. Huang and Sun, “Sunflow: Efficient optical circuit scheduling for
Coflows,” in Proc. of CoNEXT 2016, pp. 297–311, Dec. 2016.

16

[60] M. Jeon et al., “Analysis of large-scale multi-tenant gpu clusters for dnn
training workloads,” in Proc. of USENIX ATC 2019, pp. 947–960, Jun.
2019.

[61] Coflow-Benchmark. [Online]. Available: https://github.com/coflow/
coflow-benchmark.

