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Abstract: We leverage deep reinforcement learning (DRL) to optimize the topology engineering
of optical circuit switching based data-center networks, such that the hitless reconfiguration to the
obtained target physical topology can be finished with the fewest stages. Simulations confirm the
benefits of our proposal over the state-of-the-art.
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1. Introduction
The recent popularity of large language models (LLMs) has driven major data-center network (DCN) operators to
consider replacing their electrical packet switching (EPS) based spine layers with optical interconnects based on
optical circuit switching (OCS) [1]. As shown in Fig. 1(a), such an OCS-based DCN substitutes the traditional EPS-
based spine layer with a set of OCS switches that compose a reconfigurable optical interconnect, to explore the benefits
of OCS for large-throughput, adaptive and energy-efficient inter-pod communications [2]. Therefore, in addition to the
traffic engineering (TE) in EPS-based DCNs, the OCS-based DCN enables topology engineering (TPE) to offer extra
flexibility. Specifically, TPE reconfigures the optical interconnect and allows for steering of inter-pod connectivity to
adapt to dynamic and skewed application traffic. This makes OCS-based DCNs particularly promising for the training
of LLMs, since their collective communications alternate in predictable and skewed traffic patterns over time [1, 3].

In Fig. 1(a), the configurations of OCS switches determines the physical topology of the optical interconnect (each
pair of pods are connected by which and how many connections through the OCS switches). We can abstract the
physical topology to a logical one, which only records the number of connections between each pair of pods [2].
Then, a TPE operation can be detailed as: Step 1) getting a target logical topology based on the future inter-pod traffic
matrix, Step 2) computing the target physical topology based on the target logical topology, and Step 3) planning
implementable stages to reconfigure the optical interconnect from the current physical topology to the target one such
that the common part of the current and future inter-pod traffic matrices can be migrated hitlessly. Step 1 purely
depends on the future traffic matrix (independent of the remaining two), and it can be easily solved with matrix
decomposition [4]. However, Steps 2 and 3 are pretty challenging to solve for: 1) their optimizations are both NP-
hard, and 2) they are correlated (the target physical topology from Step 2 determines the solution space of Step 3).
In [2], the authors formulated an integer linear programming (ILP) model to tackle Step 2 for a practical OCS-based
DCN (Google’s Gemini). They empirically set the optimization objective as minimizing the connection rewirings
between current and target physical topologies, according to [5]. Nevertheless, as minimal rewiring ignores the traffic
distribution on connections, it might not assist Step 2 to obtain a target physical topology that is beneficial to Step
3. Moreover, solving ILP becomes intractable for large-scale problems, and without Step 3, service interruptions can
happen during TPE. To the best of our knowledge, Steps 2 and 3 have not been jointly optimized in the literature yet.

In this work, we explore the self-learning capability of deep reinforcement learning (DRL) to propose a TPE op-
timization method (namely, DRL-TPE), which jointly optimizes Steps 2 and 3 effectively. DRL-TPE takes a target
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Fig. 1. (a) Architecture of OCS-based DCN, (b) operation principle of DRL-TPE, and (c) an illustrative example on
progressive optimization done by DRL-TPE.



logical topology as input, and crafts a DRL agent based on graph convolutional networks (GCNs) to generate interme-
diate physical topologies, with which the current physical topology can be reconfigured toward a proper target physical
topology progressively and hitless traffic migration is ensured for each topology change. As DRL-TPE solves each
instance of the joint optimization with training, there is no need to generate artificial training data. This ensures its
generalization ability across various network conditions and scales, which is also verified by our simulations.

2. Network Model and Design of DRL-TPE
In an OCS-based DCN (with the architecture in Fig. 1(a)), there are N pods that are directly connected to each other
via N OCS switches. In particular, every pod/OCS switch has N ports, allowing them to wire a full mesh fabric. We
denote the set of pods as V , let Dt be the common part of the current (at time t− 1) and future (at time t) inter-pod
traffic matrices, and represent the target logical topology as G∗t (V,E

∗
t ), where e∗t (u,v) ∈ E∗t ,u,v ∈ V tells the number

of connections between pods u and v. Then, the joint optimization for TPE is to optimize the configuration Mt,n of
each OCS switch n and the reconfiguration procedure from the current physical topology ({Mt−1,n}|n∈N) to the target
physical topology ({Mt,n}|n∈N), so that the actual target logic topology (Gt(V,Et)) of the target physical topology
approximates G∗t (V,E

∗
t ) well and hitless reconfiguration from {Mt−1,n}|n∈N to {Mt,n}|n∈N requires the fewest stages.

Fig. 1(b) illustrates the operation principle of DRL-TPE. Step 1: the feature engineering module fetches network
state data (including Dt , Gt−1 and {Mt−1,n}), and encodes the data as a state representation st,i (i-th iteration), which
is readily to be processed by the DRL agent. Step 2: the DRL agent extracts global representations from st,i using the
GCN-based policy neural network (NN) and hereby outputs a policy π(a|st,i)|a∈A to direct modifications on the current
physical topology. Step 3: the selected topology modification action at,i ∼ π(a|st,i) is applied to update {Mt−1,n} and
Et−1 within the digital twin domain, which evaluates the performance of the obtained intermediate physical topology
and returns an equivalent reward rt,i. Step 4: the (st,i,at,i,rt,i) tuple is stored in the experience buffer Γ and the agent
repeats the above procedures. Step 5: every time k samples are collected, the agent performs training with the samples
in Γ to update both the policy NN and value NN by reinforcing actions leading to higher long-term rewards. Steps 1-5
are repeated until terminate conditions (e.g., fixed number of iterations executed or gap to the target logical topology
is below a threshold) are met. The above procedures are exemplified by Fig. 1(c). By learning such progressive phys-
ical topology modification policies, we optimize the target physical topology according to G∗t and Dt . Note that, the
computational complexity of DRL-TPE’s online inferences is affordable, because only feed forwarding calculations
(Step 5 is skipped) of optimized numbers of iterations are involved. Finally, we apply a greedy method to reconfigure
the current physical topology ({Mt−1,n}) to the obtained target one ({Mt−1,n}) with the fewest stages possible (i.e., each
stage tries to reconfigure the most connections according to the target physical topology until hitless traffic migration
in the make-before-break manner cannot be achieved).

We apply the actor-critic framework to realize the above optimization for DRL-TPE. Specifically, we parameterize
a policy and a value NN by fθp(·) and fθv(·), respectively, where θp and θv respectively represent the sets of NN
weights. fθp(st,i) outputs a probability distribution π(a|st,i,θp) over a discrete action space A, while fθv(st,i) estimates
the attainable long-term reward (i.e., the value). The detailed design of the DRL model for DRL-TPE is as follows.
State Input: since Dt , Gt−1 and {Mt−1,n} present strong topological characteristics and correlations, we encode them
into a graph datum st,i and employ a GCN to mine topological representations from st,i. Each node in st,i corresponds
to a pod and has a feature vector conveying its traffic demands and connectivity degrees in the current and target logical
topologies. The edges in st,i are created based on the current logical topology Gt−1.
Action Space: we design the actions for physical topology modification by leveraging local rewriting, i.e., the actions
can be adding, deleting and replacing certain connections in {Mt,n}.
NN Architecture: The policy NN fθp(·) and value NN fθv(·) employ the same GCN block, differing in only the readout
modules, i.e., the policy NN generates a probability array of length |A| while the value NN outputs a single value
estimation. The GCN block performs message passing and aggregation of multiple rounds to allow node and edge fea-
tures to propagate throughout the graph, such that each node can perceive the global graph states [6]. Such topological
processing also empowers the GCNs to potentially generalize over arbitrary graphs, effectively meeting the challenges
of the scaling of OCS-based DCNs. The ultimate node features are combined and fed to the readout modules.
Reward Function: the DRL agent receives a reward rt,i = cs(Gt−1,i,G∗t )− cs(Gt−1,i−1,G∗t ) in each iteration, where
cs(·) computes the cosine similarity between two logical topologies.
Training: the loss function for training fθv(·) is defined as the mean squared error between the predicted and observed
long-term rewards (i.e., ∑i∈[1,k] γ

i−1 · rt,i,γ ∈ (0,1] is the discount factor). In order to reinforce advantageous actions,
the policy loss takes the form − 1

k ∑i∈[1,k] δt,i · logπ(at,i|st,i,θp), where δt,i is the advantage of at,i, meaning how much
the actual performance (total received reward) turns out to be better than the expected after taking at,i.



3. Performance Evaluation
We evaluate the performance of DRL-TPE with numerical simulations considering various network sizes, and compare
it with a benchmark (Gemini), which is adapted based on the state-of-the-art in [2]. Specifically, Gemini first uses
minimal rewiring as the optimization objective to obtain a target physical topology that approximates the target logical
topology, and then leverages the same greedy method used by DRL-TPE to reconfigure the current physical topology
to the target one. The number of pods in the OCS-based DCN is set as |V | ∈ [8,256], and each connection in the
optical interconnect operates at 100 Gbps. As for the matrix of the inter-pod traffic (Dt ) that needs to be migrated
hitlessly during TPE, we make the total traffic in it consume 10%-50% of the optical interconnect’s total capacity,
and the number of non-zero elements in Dt is set within [1, |V |2−|V |]. The DRL agent of DRL-TPE is designed with
a single-layer GCN for feature extraction and readout modules of one or three fully-connected hidden layers (128
neurons per layer) for generating local rewriting policies or value estimations. We set the episode size, learning rate,
and maximum training episodes to be 50, 3×10−4, and 5,000, respectively.

We first show the training performance of DRL-TPE in Fig. 2(a). The evolution of cumulative reward received by
the DRL agent indicates that the performance of the TPE solution for an OCS-based DCN with 8 pods improves
rapidly until the training converges after ∼2,500 episodes, suggesting that the agent harnesses successful topology
rewriting policies. Then, we apply the trained agent to DCNs in larger sizes to assess its generalization ability. Fig.
2(b) shows the similarity between actual and planned target logical topologies (the algorithms’ performance on solving
Step 2). Note that, as the optimization of Step 2 is NP-hard, we might not always obtain a target physical topology
whose logical topology (the actual logical topology) is exactly the same as the target one (the planned target topology).
Although a gap might exist between the actual and planned target logical topologies, traffic provisioning performance
would not degrade as long as the gap is minor and can be compensated by TE [7]. The results in Fig. 2(b) indicate
that when there are no more than 32 pods, Gemini obtains actual logical topologies slightly closer to the planned
ones because it is devoted to Step 2 (topology optimization). However, when the OCS-based DCN further expands,
Gemini fails to derive solutions due to the intractability of solving the ILP. In Fig. 2(b) and 2(c), we insert shaded
bars to indicate the vacancy of feasible solutions. Whereas Fig. 2(b) verifies that our DRL-TPE performs steadily and
consistently generates feasible solutions, confirming the generalization ability of the learned policies across different
network sizes. Fig. 2(c) shows the average number of reconfiguration stages required by Step 3. On average, DRL
reduces this number by 23.7% over Gemini, elucidating the advantage of joint optimization over independent designs.

4. Summary
We leveraged DRL to propose a TPE optimization method for OCS-based DCNs (namely, DRL-TPE), which jointly
optimizes the target physical topology and the reconfiguration procedure to it based on a target logical topology and
current and future inter-pod traffic matrices. Extensive simulations confirmed the generalization ability of DRL-TPE
across various network conditions and scales, and demonstrated that it can reduce the required reconfiguration stages
by 23.7% on average over the existing benchmark.
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Fig. 2. (a) Training performance of DRL-TPE (|V | = 8), and (b)-(c) performance comparisons between DRL-TPE and
Gemini (|V | ∈ [8,256]): (b) similarity to planned target logical topologies, and (c) average reconfiguration stages.


