
INT-assisted Adaptive Packet Scheduling in PDP
Switches for End-to-end Latency Control

Zichen Xu, Xiaoliang Chen, and Zuqing Zhu†
School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email: SA20006080@mail.ustc.edu.cn, xlichen@ieee.org, zqzhu@ieee.org†

Abstract—In today’s Internet, ensuring the end-to-end (E2E)
latency of delay-sensitive flows is becoming increasingly chal-
lenging due to the rapid growth of network services, users and
traffic volume. In this work, we propose a packet scheduling
scheme that leverages in-band network telemetry (INT) to catch
packets’ forwarding status in realtime and realizes fine-grained
and adaptive packet scheduling accordingly for E2E latency
control, and implement it in P4-based programmable data plane
switches (PDP-SWs). Specifically, we use INT to make a packet
convey its own realtime status (e.g., experienced latency) as it
traverses the network, and program PDP-SWs in the network
to schedule the packet with the weighted round-robin (WRR)
approach based on the realtime status, such that the packet’s
quality-of-service (QoS) demand on E2E latency can be satisfied
in the most effective way. We design the packet processing
procedure in PDP-SW, propose an effective packet scheduling
algorithm, and optimize the algorithm to ensure that it can
be realized with P4 programs. The proposed scheme is then
implemented and evaluated in a real-world network testbed
built with hardware PDP-SWs. Experimental results confirm the
effectiveness of our proposal and suggest that it achieves better
control of E2E latency than a few existing benchmarks.

Index Terms—In-band network telemetry, P4, Weighted round-
robin scheduling, End-to-end latency control.

I. INTRODUCTION

Over the past decade, network services, users and traffic
volume in the Internet have grown explosively due to the fast
development of data-centers (DCs) [1–4] and 5G networks [5–
7], putting great pressure on satisfying the quality-of-service
(QoS) demands on end-to-end (E2E) latency, especially for
emerging delay-sensitive applications such as virtual reality,
autonomous driving, and distributed machine learning [8].
Moreover, the Internet infrastructure is undergoing dramatic
changes with wide deployment of new networking technolo-
gies (e.g., software-defined networking (SDN), virtual network
slicing, and network function virtualization (NFV)), making
networks more and more dynamic and complex [9–12]. These
challenges have promoted operators to continuously look for
mechanisms that can control E2E latency of delay-sensitive
flows in dynamic and complex network environments.

The E2E latency of flows can be controlled with the control
plane, data plane and coordination of the two planes. The
control plane based approaches conduct network monitoring
with polling-based schemes (e.g., SNMP [13], sFlow [14],
and Netflow [15]) and invoke traffic engineering (TE) to
reroute the delay-sensitive flows whose E2E latency violates
their QoS requirements. However, the response speed of these

approaches depends on their polling periods, making it difficult
for them to react to sudden network changes timely. In the data
plane, the E2E latency of flows can be managed by either
end-hosts or switches/routers. As for end-hosts, people have
developed congestion control mechanisms such as TCP [16]
and DTCP [17], which let source end-host reduce its sending
rate when abnormally-long E2E latency occurs. Nevertheless,
the response speed is limited by the round-trip time of a
flow and reducing its sending rate might also affect the QoS.
Switches/routers control the E2E latency of flows with packet
scheduling, and can respond to sudden network changes almost
instantly. However, how to assign priorities to packets for
enforcing E2E-latency-guaranteed scheduling in dynamic and
complex network environments is still an open question, i.e.,
it is challenging to realize fine-grained and adaptive packet
scheduling for ensuring QoS demands on E2E latency [18].

The programmable data plane (PDP) [19] has provided
efficient ways of controlling E2E latency with the coordination
of control and data planes. For instance, in-band network
telemetry (INT) [20] can be realized with PDP switches (PDP-
SWs) to achieve fine-grained and realtime network monitoring
for each flow. INT lets each PDP-SW encode the selected net-
work status that a packet sees when passing through the PDP-
SW as telemetry data in the packet, then as the packet traverses
the network, it accumulates telemetry data hop by hop, and
finally all the telemetry data is extracted and forwarded to the
control plane at the egress PDP-SW. Therefore, the control
plane can invoke TE much more timely when abnormally-
long E2E latency happens for a flow [21, 22]. Nevertheless,
as these E2E latency control schemes still count on the control
plane to make TE decisions, their response speed is still slow,
making it hard to respond to sudden network changes on time.

To further increase the response speed of INT-based E2E
latency control, researchers have tried to realize instant packet
scheduling in PDP-SWs based on telemetry data collected by
INT [23–27]. The studies in [23, 24] leveraged multiple first-
in-first-out (FIFO) queues in a PDP-SW and realized strict
priority (SP) based packet scheduling with them, while the
priority of each packet was determined based on the telemetry
data encoded in it. Similarly, the authors of [25–27] used
single or multiple FIFO queues together with SP-based packet
scheduling to simulate a push-in-first-out (PIFO) queue for
latency control. Although these approaches did leverage INT
and instant packet scheduling to send out the packets whose
demands on E2E latency are more stringent earlier, they still

bear the following issues, which prevent them from controlling
the E2E latency of each delay-sensitive flow precisely.

First, they only schedule a packet with more stringent E2E
latency requirement to a higher-priority queue, but do not
provide a mechanism that can select the most appropriate
queue for a packet according to its actual demand on E2E la-
tency. Second, some of them (e.g., those in [26, 27]) leveraged
recirculated packets to convey the lengths of output queues in
each PDP-SW, but as recirculation takes time, the obtained
queue lengths might not be accurate, leading to incorrect
packet scheduling. Third, SP-based packet scheduling has the
intrinsic drawback of starving low-priority packets when the
load of high-priority packets is high, and since the memory
space in each PDP-SW is limited, it would be impossible to
store all the E2E-latency-constrained packets in the highest-
priority queue, when incoming traffic approaches to the level
of congestion. Hence, although SP-based packet scheduling
can shorten the average flow completion time [25, 27, 28],
it might not always satisfy the E2E latency requirements
of packets. Lastly but most importantly, an E2E-latency-
constrained packet might need to go through multiple hops to
reach its destination, but these packet scheduling schemes only
consider local optimization, and thus they might not be able
to ensure the E2E latency of delay-sensitive flows accurately.

In this work, we propose an INT-assisted adaptive packet
scheduling scheme, which leverages INT to convey network
status (e.g., queue lengths) to PDP-SWs and lets them perform
packet scheduling based on the remaining hops of each packet
accordingly, for precise E2E latency control, and implement
our proposal (namely, remaining-hop-aware (RHA) packet
scheduling) in P4-based hardware PDP-SWs with Tofino A-
SICs. Specifically, our RHA scheduling scheme obtains real-
time network status with INT and uses weighted round-robin
(WRR) scheduling to avoid the starvation of packets caused
by the SP approach. Similar to existing approaches, we also
leverage packet recirculation to obtain queue lengths at each
egress port, but to improve the accuracy of E2E latency control
for delay-sensitive flows, we derive the mapping relation be-
tween the obtained queue lengths and estimated queuing delay
to help each PDP-SW select a proper queue for each packet.
Experimental results verify that our proposal can control the
E2E latency of flows better than a few existing benchmarks.

Our major contributions can be summarized as follows:
• We explore the relation between the obtained queue

lengths and estimated queuing delay to enable hardware
PDP-SWs to perform adaptive packet scheduling for
satisfying the E2E latency requirement of each packet.

• We improve the packet recirculation for getting queue
lengths at each egress port of a PDP-SW, by mitigating
the impact of recirculation delay to make obtained queue
lengths work more accurately in the ingress pipeline.

• We utilize WRR scheduling approach to avoid starvation
of packets, and propose a RHA packet scheduling scheme
for precise E2E latency control of delay-sensitive flows.

• We build a small-scale but realistic network testbed to
demonstrate our proposal experimentally, and verify its

advantages over existing benchmarks.

The rest of the paper is organized as follows. Section II
surveys the related work briefly. We design our proposed
scheme in Section III. The experimental demonstrations are
shown in Section IV. Finally, Section V summarizes the paper.

II. RELATED WORK

Since network congestion can severely affect E2E latency
of flows, host-based congestion control mechanisms such as
those in [16, 17] were the earliest ways of E2E latency control.
However, the response speed of these host-based schemes is
limited by the round-trip time of each flow and they might not
react to network changes before congestion actually happens
to cause packet losses. To improve the response speed of
E2E latency control such that sudden network changes can
be handled instantly, we need to realize packet scheduling
in switches/routers with realtime monitoring, which can be
facilitated by INT [20]. People have implemented INT with
P4 [29] and POF [30], and deployed them to monitor various
networks [31, 32]. Most of the existing INT-assisted E2E
latency control schemes still involve the control plane (e.g.,
in [22]), and thus cannot react to network changes instantly.

The studies in [23, 24] realized instant packet scheduling
in PDP-SWs based on the telemetry data collected by INT,
but as they use SP-based packet scheduling, the starvation of
packets cannot be avoided. The authors of [23] programmed
each PDP-SW to make scheduling decisions on packets based
on their forwarding status so far, without considering the status
of the current hop, while the work in [24] simply lets a PDP-
SW send a packet to the highest priority queue if it finds out
that the queue to which the packet was originally planned to
go has abnormally-long queuing delay. On the other hand, the
studies in [25–27] proposed to simulate a PIFO queue and
implement various scheduling algorithms based on it in PDP-
SWs. To save hardware resources, Yu et al. [26] only leveraged
one FIFO queue for packet scheduling, which might lead to
unexpected packet losses, and the issue was relieved in [25,
27] after considering multiple FIFO queues. However, these
studies focused on realizing existing scheduling algorithms
in PDP-SWs, but have not addressed how to optimize the
scheduling algorithms for precise E2E latency control.

In addition to the scheduling algorithms considered in [25–
27], there are more sophisticated ones in the literature, such
as the shortest remaining processing time first (SRPT) [28],
start time fair queuing [33], and quick fair queuing [34], but it
is difficult for them to be implemented in P4-based PDP-SWs
due to hardware limitations. RPQ [35] proposed to leverage
WRR-based scheduling for delay-sensitive flows, but it did not
consider the packet scheduling for precise E2E latency control.

III. SYSTEM DESIGN

In this section, we will first give an overview of our
proposed system, and then describe its design in detail to
explain its principle of ensuring E2E latency of packets.

Ingress Pipeline

Traffic

Management Egress Pipeline

Queues

Packet

Classification
RHA Packet

Scheduling

Register Set

Queue Length

Extraction

Packets
Routing Forward

write

read

Packet

Classification

Queue Length

Encoding

Queue Length

Update

Register Set

read

write

INT
Packets

P4-based Hardware PDP-SW

Packet Recirculation

E2E-latency-constrained Packet Probe Packet Recirculated Probe Packet Delay-insensitive Packet

Occupied Space Free Space

Drop

Queues

Fig. 1. System overview of INT-assisted RHA packet scheduling for E2E latency control.

A. Design Overview

Fig. 1 shows the overview of the proposed INT-assisted
RHA packet scheduling system, which is designed based on a
hardware PDP-SW with Tofino ASICs for E2E latency control.
To facilitate RHA scheduling, we categorize packets into
four types, i.e., the probe packets, recirculated probe packets,
E2E-latency-constrained packets, and delay-insensitive pack-
ets, where the delay-sensitive and delay-insensitive packets are
from active applications in the network, the probe packets are
generated according to instructions from the control plane for
realizing queue length measurements in realtime, and the recir-
culated probe packets are probe packets that have experienced
recirculation in PDP-SWs and thus carry information about
queue lengths. We design modules in a PDP-SW to process
the four types of packets and allocate registers to store the
obtained queue lengths in both ingress and egress pipelines.

When a packet arrives, the PDP-SW parses it and sends
it to the ingress pipeline. In the ingress pipeline, the packet
passes through the routing and packet classification modules
in sequence, where the former determines its egress port and
the latter figures out its type based on the hashed 5-tuple. If
it is a probe packet, we set its egress port as the dedicated
recirculation port. If it is an E2E-latency-constrained packet,
we process it by the RHA packet scheduling module, which
selects an appropriate queue for it based on the status data
encoded in its INT fields, its remaining hops stored in the PDP-
SW, and the lengths of the queues at its egress port (stored in
registers), or drops it if an appropriate queue cannot be found.
For a recirculated probe packet, the queue length extraction
module gets queue lengths at an egress port from it to store in
registers, before dropping it. Finally, if it is a delay-insensitive
packet, we determine its egress port according to its flow entry
stored in the PDP-SW. Next, the packets are sent to the traffic
management module that contains the queues dedicated to
each egress port. As the recirculation port is dedicated for
packet recirculation, only probe packets will be sent to it, and
thus probe packets will not share any queues with E2E-latency-
constrained or delay-insensitive packets.

In the egress pipeline, the packet classification module for-

wards probe packets to the queue length encoding module and
sends E2E-latency-constrained and delay-insensitive packets
to the queue length update module. Here, we introduce the
probe packets to solve the problem that in a Tofino-based
PDP-SW, the queue lengths at egress ports cannot be obtained
directly in the ingress pipeline [26, 27]. Then, the queue
length encoding module modifies the actual queue lengths to
compensate the impact of recirculation delay (the principle of
the queue length modification will be introduced in Section
III-D), and encodes the results in probe packets, which will
then bring the queue lengths to the ingress pipeline after
recirculation. As for the E2E-latency-constrained and delay-
insensitive packets, the queue length update module obtains
the current lengths of the queues that they just experienced and
updates the corresponding registers, and then the INT module
inserts the selected status data in them as INT fields.

B. Selection of Queue Type and Scheduling Scheme

FIFO queue is one of the simplest queues, and as shown in
Fig. 2(a) (the numbers represent the priorities of the packets),
it dequeues packets according to their arrivals in sequence,
regardless of their priorities. On the other hand, PIFO queue
can change the positions of packets in it according to their
priorities, ensuring higher-priority packets to be sent out earlier
(as shown in Fig. 2(b)). However, it is difficult to realize a
PIFO queue in a Tofino-based PDP-SW, because it does not
support moving packets in a queue dynamically.

12543 12543

FIFO

43 5 2 1

(a) FIFO

12543 54321

PIFO

21 3 4 5

(b) PIFO

Fig. 2. Working principle of queues.

Although PIFO queues can not be realized directly in a
Tofino-based PDP-SW, we can emulate one by combining

Priority: Queue 3 > Queue 2 > Queue 1

Queue 1

Queue 2

Queue 3

(a) SP scheduling

Queue 1: weight = 1

Queue 2: weight = 2

Queue 3: weight = 3

(b) WRR scheduling

Fig. 3. Principle of SP and WRR scheduling schemes.

multiple FIFO queues and assigning a priority to each of them
(as shown in Fig. 3(a)), i.e., applying the SP scheduling to the
FIFO queues [25, 27]. However, SP scheduling can lead to
the starvation of packets in a low-priority queue. This issue
can be resolved by the WRR scheduling, and as shown in Fig.
3(b), we assign a weight to each FIFO queue and determine
the lower-bound of dequeuing rate Ri of the i-th queue as

Ri =
wi

N∑
j=1

wj

·R, (1)

where wi is the weight of the i-th queue, N is the number
of queues, and R is data-rate of the egress port. Hence,
WRR scheduling provides a higher dequeuing rate to a queue
whose weight is higher, but will not starve any of the queues.
Note that, Ri is just the lower-bound, and a queue’s actual
dequeuing rate will be higher if any of the other queues are
idle. Considering these benefits, we use multiple FIFO queues
and WRR scheduling to design our RHA scheduling scheme.

C. Packet Status Tracking

We leverage INT to track the forwarding status of each E2E-
latency-constrained packet in realtime, and the packet format
is shown in Fig. 4, which is adapted from the standard INT
packet format [20] with only minor modifications. Specifically,
we insert an INT header in between the TCP/UDP header and
payload, and leverage the “protocol” field in the IP header to
indicate that a packet contains the INT header (i.e., it is an
INT packet). Specifically, the field is modified to 0xfe or 0xff
by the packet’s ingress PDP-SW if it is a TCP or UDP packet,
respectively, and will be restored to its original value by the
egress PDP-SW. As shown in Fig. 4, each INT header contains
fields of Hop Count and Total Queue Time followed by a
number of INT Fields, where Hop Count is a one-byte field
that tells the number of hops that the packet has experienced,
Total Queue Time stores the total queuing delay that the packet
has experienced in a 6-byte field, and they are updated by the

Eth IP TCP/UDP PayloadINT field 1

IP.protocol = 0xff

or 0xfe

DeviceID Queue Time

Total Queue Time

INT header

 INT field nHop Count

Fig. 4. Format of INT packets.

INT module in the egress pipeline of a PDP-SW (as shown
in Fig. 1). Each INT Field contains two 4-byte subfields, i.e.,
DeviceID and Queue Time, where DeviceID stores the unique
ID of the PDP-SW that encodes the INT Field, and Queue
Time is the queuing delay of the packet in the PDP-SW.

When a PDP-SW receives an E2E-latency-constrained pack-
et whose unique index is i, it first extracts the value of
Total Queue Time to ti, and then the remaining E2E tolerable
queuing delay (TQD) Ti of the packet can be calculated as

Ti = τi − ti, (2)

where τi is the total E2E TQD calculated by excluding E2E
transmission delay, tested when no congestion occurs, from
the packet’s required E2E latency. The required E2E latency is
set based on the service-level agreement (SLA) of the packet’s
application, while the E2E transmission delay can be obtained
in advance by leveraging probe packets. Ti will be used for
the subsequent RHA packet scheduling.

D. Estimation of Queuing Delay

To ensure the E2E latency of a packet, we have to estimate
the queuing delay at each hop, which is the major challenge
of designing our RHA packet scheduling scheme. We try to
explore the relation between the length and queuing delay of
each queue in a PDP-SW such that the queuing delay can be
estimated approximately. When a queue does not approach to
congestion, its length would be close to zero, and thus packets
almost experience zero queuing delay in it. On the other hand,
when a queue approaches to congestion, its length and queuing
delay increase simultaneously. As we use WRR scheduling,
the queuing delay Tqi of the i-th queue qi can be estimated
based on the queue length Qi as follows if we assume that
the queuing delay changes linearly with the queue length

Tqi =
R

ri
· k ·Qi, (3)

where ri is the dequeuing rate and k is the constant coefficient
that reflects the linear relation between the queuing delay and
queue length when the dequeuing rate equals the data-rate
of the egress port (R). Although the dequeuing rate ri can
change dynamically, we can get its lower and upper bounds
with Eq. (1) and the data-rate of the egress port, respectively,
i.e., ri ∈ [Ri, R]. Then, the queuing delay falls in Tqi ∈ [k ·
Qi,

R
Ri
· k ·Qi], i.e., it can be derived with the queue length.

Although the length of each queue can be obtained in
the egress pipeline of a PDP-SW, we need to estimate its
queuing delay before scheduling an E2E-latency-constrained
packet, which is performed in the ingress pipeline. Therefore,
recirculation of probe packets has to be used to bring the queue

Ingress Pipeline Egress Pipeline

Traffic

Management

Packet Recirculation

Recirculated

Probe Packet

Registers

Registers

Queues

Queues

Changed

 !
"

Updated

Registers

Registers

Updated

 !
"

 #
"

 !
"

Fig. 5. Example on inaccurate queue lengths caused by packet recirculation.

Match Action Action Data

Queue 1: [!
(!)
, "

(!)
): range

Queue 2: [!
(")
, "

(")
): range

Queue N: [!
(")

, #
(")

): range

modify_queue_depth() !
(!)

, !

(")
, , !

(")

Queue 1: [!
(")
, #

(")
): range

Queue 2: [!
(")
, #

(")
): range

Queue N: [!
(")

, #
(")

): range

modify_queue_depth() !
(")

, !

(!)
, , !

(")

#

Queue 1: [!"#$

($)
, !"

($)
): range

Queue 2: [!"#$

(!)
, !"

(!)
): range

Queue N: [!"#$

(")
, !"

(")
): range

modify_queue_depth() !
(")

, !

(")
, , !

(!)

Default No_Action

Fig. 6. MAT for improving packet recirculation.

lengths obtained in the egress pipeline to the ingress pipeline
(as shown in Fig. 1), but the delay of each recirculation
will degrade the accuracy of the queue lengths inevitably.
Specifically, as shown in Fig. 5, after E2E-latency-constrained
or delay-insensitive packets have updated the queue lengths
stored in registers in the egress pipeline, a probe packet will
carry the updated queue lengths to the ingress pipeline at t∗0.
Due to its recirculation delay, the recirculated probe packet
arrives and updates the queue lengths stored in the ingress
pipeline at t∗1 (t∗1 > t∗0). However, the actual queue lengths
might have already changed at t∗1, making the ingress pipeline
schedule packets with inaccurate queue lengths.

Therefore, we need to modify the queue lengths to account
for their changes during each packet recirculation, which is
performed by the queue length encoding module shown in
Fig. 1, before encoding them in a probe packet to the ingress
pipeline. Specifically, we design a match-action table (MAT)
as shown in Fig. 6 in the queue length encoding module,
which increases the queue length Qi of each queue qi by a
constant. For example, assuming that there are three queues
whose lengths are Q1, Q2 and Q3, respectively, and the queue
lengths sent back to the ingress pipeline by a probe packet will
be Q1 + c

(1)
1 , Q2 + c

(1)
2 and Q3 + c

(1)
3 if the queue lengths

match to the first entry in the MAT. The actual values of the
constants are set based on congestion status, i.e., the value of a
constant increases with the current length of its corresponding
queue. In other words, for each queue, we provide it with a

larger increment when its length is longer, and vice versa.

E. RHA Packet Scheduling
As illustrated in Fig. 1, the RHA packet scheduling module

needs to use an adaptive scheduling algorithm to select a
proper queue for each E2E-latency-constrained packet based
on the modified queue lengths stored in the ingress pipeline.
Specifically, when receiving an E2E-latency-constrained pack-
et, we first calculate its remaining E2E-TQD with Eq. (2),
and get the modified queue lengths for its egress port from
the corresponding registers. Note that, it is difficult to realize
arbitrary multiplication operations in a hardware PDP-SW, and
we can only approximate the result of multiplying a variable
by a constant “MathUnit” in runtime. Hence, we precalculate
the values of d R

Ri
· ke for different wi and store them in the

PDP-SW as MathUnits, and then the range of queuing delay
can be estimated with Eq. (3) in runtime.

Theorem 1: For a packet, if for an arbitrary queue, the
queuing delay upper-bound estimated based on the current
queue length is longer than its TQD t0, its actual queuing
delay in any queue at its egress port should be longer than t0.

Proof: Considering a packet p whose TQD is t0, if for
an arbitrary queue at its egress port, the queuing delay upper-
bound estimated based on the current queue length is longer
than t0, we know that all the queues at its egress port currently
have packets to be sent, and thus they are all scheduling
packets at the lower-bounds of their dequeuing rates. If we
assume that there is a queue qi that can satisfy the packet’s
TQD t0, the queuing delay t2 of the packet in qi should be
t2 ≤ t0. Then, if by the time when the packet is dequeued
from qi, the queue qi has always been scheduling packets
at the lower-bound of its dequeuing rate continuously, the
packet’s actual queuing delay will be longer than t0, which
violates the assumption. Therefore, at least one other queue at
the packet’s egress port needs to empty its packets before that
time, to increase the dequeuing rate of qi. If we assume that
there is such a queue and it has taken t1 to empty its packets,
we have t1 > t0 because the packet has not been sent to
the queue (i.e., if we have t1 ≤ t0, the queue can satisfy the
packet’s TQD and thus we should have sent the packet to it
at the first place). However, as the dequeuing rate of qi only
gets improved after t1, the actual queuing delay of the packet
in q2 should be longer than t1, resulting in t2 > t1 > t0, but

this still contradicts the assumption t2 ≤ t0. Hence, we have
proved that the actual queuing delay of p in any of the queues
at its egress port should be longer than its TQD t0.

Algorithm 1: RHA packet scheduling scheme
Input: Queue set Q = {q1, q2, · · · , qN} and weight set

W = {w1, w2, · · · , wN}, wi < wi+1, ∀i ∈ [1, N − 1].
1 if PDP-SW gets an E2E-latency-constrained packet pi then
2 Tu

q = ∅, count = 0, flag = 1;
3 extract ti from the Total Queue Time field in pi;
4 get E2E-TQD, remaining hops hi and egress port of pi;
5 calculate remaining E2E-TQD Ti of pi with Eq. (2);
6 h̃i = dlog2(hi)e;
7 shift Ti right for h̃i bit(s) to get TQD T̃i;
8 for each queue qj in Q do
9 get its queue length from corresponding register;

10 estimate the upper-bound of queuing delay Tu
qj with

preset “MathUnit” and store it in set Tu
q ;

11 end
12 while count ≤ h̃i do
13 for each queuing delay Tu

qk in set Tu
q do

14 if Tu
qk ≤ T̃i then

15 send packet pi to queue qk;
16 encode telemetry data in pi and update length

of qk stored in the egress pipeline;
17 count = h̃i, flag = 0;
18 break;
19 end
20 end
21 shift T̃i left for one bit;
22 count = count+ 1;
23 end
24 if flag = 1 then
25 drop the packet;
26 end
27 end
28 if PDP-SW gets a probe packet then
29 forward it to the dedicated recirculation port;
30 get queue lengths from registers in the egress pipeline and

modify them based on their status;
31 encode modified queue lengths to the probe packet and sent

it back to the ingress pipeline;
32 end
33 if PDP-SW gets a recirculated probe packet then
34 extract queue lengths from it and update corresponding

registers in the ingress pipeline;
35 drop the packet;
36 end

With Theorem 1, we design the RHA scheduling algorithm
as shown in Algorithm 1 to only focus on the queuing delay
upper-bound of each queue. Here, we consider the program-
ming constraints of a P4-based hardware PDP-SW to make
sure that Algorithm 1 can be implemented in it directly. Lines
1-27 are for the processing of an E2E-latency-constrained
packet. Lines 2-5 are for the initialization. For an E2E-latency-
constrained packet pi, its TQD T̃i is calculated based on its
remaining E2E-TQD Ti and remaining hops hi as

T̃i = b
Ti

hi
c, (4)

Host A

Host B

Host C

Controller

SW 1 SW 4SW 3

Data Plane

SW 2

Traffic Generator

Fig. 7. Experimental setup.

Fig. 8. Experimental results on 99% tail queuing delay.

by assuming that the quota of its remaining E2E-TQD is
evenly allocated to each of its remaining hops (Lines 6-7).
As each packet’s routing path is planned by the control plane,
each intermediate PDP-SW on the routing path knows exactly
about the remaining hops. Lines 8-11 estimate the queuing
delay upper-bounds of all the queues at the packet’s egress
port. Then, we check all the queues to select an appropriate
one for the packet in Lines 12-23. Specifically, we relax
the TQD T̃i of the packet by doubling its value in each
iteration, and try to find a proper queue satisfying it. If such a
queue can be found within h̃i iterations, Lines 15-17 schedule
the packet to it and update the packet and the PDP-SW’s
status accordingly. For example, if the number of remaining
hops is hi ∈ [5, 8], we have h̃i = 3 according to Line
6. Otherwise, if an appropriate queue cannot be found for
the packet, we drop it as its requirement on E2E latency
cannot be satisfied (Lines 24-26). Lines 28-32 and Lines 33-
36 show the procedures for processing a probe packet and a
recirculated probe packet, respectively. As the PDP-SW will
just forward a delay-insensitive packet normally without any
special operations, we omit the procedure here to save space.
Note that, although we assume Tofino-based PDP-SWs here,
our RHA scheduling is also applicable to other types of PDP-
SWs as long as the required parameters can be obtained.

IV. EXPERIMENTAL DEMONSTRATIONS

In this section, we discuss the experiments with a real-
world testbed to verify the effectiveness of our RHA packet

(a) Queue 1 with weight w1 = 2 (b) Queue 2 with weight w2 = 3 (c) Queue 3 with weight w3 = 5

Fig. 9. Validation of linear relation between queue length and queuing delay.

scheduling scheme and compare it with existing benchmarks.

A. Experimental Setup

We implement our proposed INT-assisted RHA packet
scheduling scheme in a real-world network testbed, and Fig.
7 shows the configuration of the testbed. Here, the data plane
consists of three end-hosts, four Tofino-based PDP-SWs, and
a traffic generator, which are all connected through 10GbE
connections. Both the end-hosts and traffic generator are
based on Linux servers. The end-hosts generate E2E-latency-
constrained flows, and the traffic generator is used to introduce
congestion in the PDP-SWs. In the control plane, we have a
controller running on a server to manage the PDP-SWs with
P4Runtime [36], which provides E2E-TQDs and remaining
hops of E2E-latency-constrained packets, and generates probe
packets to measure queue lengths on each PDP-SW.

B. Feature Validation

We first verify that our RHA scheduling can alleviate the
starvation of packets caused by the SP-PIFO scheduling [25].
We select two queues (namely, Queues 1 and 2, respectively)
in the SW 1 shown in Fig. 7, and set the priority/weight of
Queue 2 to be higher than that of Queue 1 when implementing
RHA or SP-PIFO scheduling with the two queues. Then, we
let Host A and the traffic generator simultaneously send E2E-
latency-constrained flows Flows 1 and 2 to Host B, where
the E2E-TQD of Flow 2 is shorter than that of Flow 1, and
schedule packets of the two flows with RHA and SP-PIFO,
respectively. Specifically, our RHA scheduling will let each
PDP-SW select an appropriate queue for each packet adap-
tively according to our design, while the SP-PIFO scheduling
simply targets the packets of Flows 1 and 2 to Queues 1 and
2, respectively, to ensure that packets with shorter E2D-TQD
are always forwarded out earlier.

The experiments fix the data-rate of Flow 1 as 4.1 Gbps
and measure the queuing delay of Queue 1 when the data-rate
of Flow 2 changes. Fig. 8 plots the experimental results on
99% tail queuing delay (obtained after testing 1000 packets
sent from Queue 1), where each data point is obtained by
averaging the results from 5 independent experiments. It can
be seen that the 99% queuing delay from SP-PIFO increases

TABLE I
RESOURCE USAGE IN A TOFINO-BASED PDP-SW

Resource Usage Percentage (%)
TCAM 20 6.94
SRAM 39 4.06

Hash Bit 113 2.26
Stateful ALU 11 22.92

exponentially with the data-rate of Flow 2, making packets
in Queue 1 experience queuing delay at milliseconds or even
longer when the data-rate of Flow 2 is 7 Gbps or higher. On
the other hand, the 99% queuing delay from RHA is similar
to that from SP-PIFO when the data-rate of Flow 2 is less
than 6 Gbps, but it stays at around 100 µs as the data-rate
of Flow 2 keeps increasing. The experimental results in Fig.
8 suggest that SP-PIFO can cause abnormally-long queuing
delay to low-priority packets due to the starvation of packets,
which is avoided effectively by our RHA. This is because our
RHA uses WRR, which ensures the lower-bound of dequeuing
rate for each queue, avoiding the starvation of packets better.

Next, we conduct experiments to validate Eq. (3), which is
derived after our RHA scheduling assumes that the queuing
delay of each queue changes linearly with its length. We set
k = 64 in Eq. (3), measure the queuing delays for different
queue lengths, and compare them with the estimated results by
Eq. (3). All of the following experiments consider the case of
each egress port having three queues, whose weights are w1 =
2, w2 = 3, and w3 = 5, respectively. The results are shown in
Fig. 9, where the queue length is in terms of “cells”, each of
which is an 80-byte unit in one queue of Tofino-based PDP-
SW. We can see that for all the three queues, the estimated
queuing delays by Eq. (3) match well with the real values
measured in the experiments. This confirms the approximate
linear relation between the length and queuing delay of each
queue. Meanwhile, by comparing the results in Figs. 9(a)-9(c),
we observe that increasing a queue’s weight makes its queuing
delay for a specific queue length shorter. Fig. 9 validates that
we can precisely estimate queuing delay based on queue length
with Eq. (3), justifying the algorithmic basis of our proposal.
Table I shows the resource usage in a Tofino-based PDP-SW
with our RHA scheduling scheme deployed.

(a) E2E-TQD is 24 µs (b) E2E-TQD is 20 µs (c) E2E-TQD is 16 µs

Fig. 10. Effectiveness of improving accuracy of queue length estimation with queue length modification (QLM) at egress pipeline.

Finally, we measure the accuracy of queuing delay esti-
mation after packet recirculation when our proposed queue
length modification (QLM) is applied (with the MAT in an
egress pipeline, as shown in Fig. 6). According to the operation
principle in Fig. 1, each PDP switch will directly drop the E2E-
latency-constrained packets whose required E2E latency has
expired. However, this cannot rule out the possibility that the
receiving end gets E2E-latency-expired packets, because an
E2E-latency-constrained packet whose required E2E latency
has not expired by the time when it enters the last hop might be
scheduled inappropriately to make its E2E latency longer than
the required value at the receiving end. Therefore, we design
the experiments to let Host A and traffic generator simultane-
ously send E2E-latency-constrained traffic (with E2E-TQDs
randomly selected from {16, 20, 24} µs) to Host B through
SW 1, generating different levels of congestion there.

The results are shown in Fig. 10, where each data point is
also obtained by averaging the results from 5 independent runs,
and the ratio of expired packets is defined as the proportion of
expired packets to all the packets (10, 000 of them) received at
Host B. It can be seen that QLM effectively reduces the ratio
of expired packets over the scheme without it, verifying that it
can indeed improve the accuracy of queuing delay estimation
by modifying the queue lengths obtained at the egress pipeline
to compensate for the inaccuracy due to packet recirculation.
We also observe that for the scheme with QLM, the ratio of
expired packets increases with the total throughput to Host B.
This is because when the congestion level becomes severer, it
is more difficult for RHA scheduling to ensure E2E latency of
each packet. However, with QLM, the ratio of expired packets
is still significantly lower than that without it, which further
confirms the effectiveness of QLM. By comparing the results
in Figs. 10(a)-10(c), we find that the recirculation delay indeed
affects the performance of scheduling, causing a relative large
portion of expired packets if QLM is not applied, but QLM
can effectively mitigate the impact of recirculation delay and
reduce the portion of expired packets significantly.

C. Performance Benchmarking

In order to further verify the effectiveness of our RHA
packet scheduling scheme, we compare it with the packet

scheduling scheme designed in SRPT [28], which ignores the
remaining hops of each packet. Specifically, the experiments
let Host A send E2E-latency-constrained flows with different
E2E-TQDs to Host C, and measure the queuing delay that
packets experience in SW 1. The experimental results are
shown in Fig. 11, where Range 1, Range 2 and Range 3 are
for (0, E2E-TQD/4], (E2E-TQD/4, E2E-TQD/2], and (E2E-
TQD/2, E2E-TQD], respectively. Here, we generate conges-
tion constantly over time, and define the state of congestion
based on the results of SRPT. For example, if under the current
congestion state, most packets of a flow using SRPT can still
be delivered with short queuing delay, it is “slight congestion”
for the flow, and it is “heavy congestion”, otherwise. We find
that both RHA and SRPT can avoid most packets experiencing
long queuing delay when congestion is slight. However, as
congestion aggravates, it becomes more difficult to maintain
short queuing delay for E2E-latency-constrained packets, and
thus the proportion of packets with relatively long queuing
delay increases. RHA makes less packets experience long
queuing delay than SRPT. This is because SRPT schedules
packets only based on their remaining E2E-TQDs but ignores
their remaining hops. As RHA makes more packets experience
short queuing delay, it reduces the probability of these packets
being dropped in subsequent hops, increasing the chance of
forwarding them to Host C within their required E2E latency.

Finally, we compare the packet loss ratio of the scenarios
with SRPT and RHA, when E2E-latency-constrained packets
encounter different congestion probabilities on their path to
their receiving end host. Specifically, we still let Host A send
E2E-latency-constrained flows whose E2E-TQDs are selected
from {16, 20, 24} µs to Host C, introduce different degrees
of congestion on each PDP-SW along their routing path with
various probabilities to emulate the cases in a real-world net-
work, and schedule packets with RHA and SRPT, respectively.
The experimental results are shown in Fig. 12, and they are
obtained by averaging over 10 independent experiments. As
expected, the packet loss ratios from both RHA and SRPT
increase with the congestion probability, and packets with
stricter E2E latency requirements are more likely to be lost.
RHA always outperforms SRPT to drop less packets in all the
experimental scenarios, which verifies that RHA can schedule

(a) E2E-TQD is 24 µs (b) E2E-TQD is 20 µs (c) E2E-TQD is 16 µs

Fig. 11. Distribution of queuing delay for E2E-latency-constrained under different congestion levels.

(a) Congestion probability is 10% (b) Congestion probability is 20% (c) Congestion probability is 30%

Fig. 12. Packet loss ratio for delay-sensitive flows that have different E2E-TQDs with different congestion probabilities.

E2E-latency-constrained packets better than SRPT.

V. CONCLUSION

In this paper, we proposed an INT-assisted adaptive packet
scheduling scheme to ensure the E2E latency of delay-sensitive
flows, and optimized its implementation in P4-based hardware
PDP-SWs. We first leveraged INT to catch realtime status of
packets such that each PDP-SW can obtain their remaining
E2E-TQDs accurately. Then, to avoid the starvation of packets,
we adopted the WRR approach for the queues at each egress
port of a PDP-SW. Next, we studied the relation between
queue length and queuing delay, such that each PDP-SW
can estimate queuing delay based on queue lengths obtained
from its egress pipeline through packet recirculation. We also
designed a queue length modification scheme to mitigate the
impact of recirculation delay to make the obtained queue
lengths more accurate. These efforts were combined to propose
the INT-assisted adaptive packet scheduling system with RHA
scheduling, which can schedule each E2E-latency-constrained
packet based on its realtime status, remaining E2E-TQD,
remaining hops, and the upper-bound queuing delay of queues
in each PDP-SW along its routing path, to satisfy its QoS de-
mand on E2E latency. Our implementation of the RHA packet
scheduling was demonstrated experimentally in a real-world
network testbed, and we evaluated it against representative
benchmarks. Experimental results indicated that our proposal

relieved the starvation of packets and ensured E2E latency for
delay-sensitive packets better than the benchmarks.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Pro-
gram of China under Grant 2023YFB2903903.

REFERENCES

[1] Cisco Annual Internet Report (2018-2023). [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-papper-c11-741490.html.

[2] P. Lu et al., “Highly efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] P. Lu and Z. Zhu, “Data-oriented task scheduling in fixed- and flexible-
grid multilayer inter-DC optical networks: A comparison study,” J.
Lightw. Technol., vol. 35, pp. 5335–5346, Dec. 2017.

[4] V. Dukic et al., “Beyond the mega-data center: Networking multi-data
center regions,” in Proc. of ACM SIGCOMM 2020, pp. 765–781, Aug.
2020.

[5] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[6] A. Matencio-Escolar, Q. Wang, and J. Calero, “SliceNetVSwitch: Def-
inition, design and implementation of 5G multi-tenant network slicing
in software data paths,” IEEE Trans. Netw. Serv. Manag., vol. 17, pp.
2212–2225, Oct. 2020.

[7] R. Gour, G. Ishigaki, J. Kong, and J. Jue, “Availability-guaranteed slice
composition for service function chains in 5G transport networks,” J.
Opt. Commun. Netw., vol. 13, pp. 14–24, Jan. 2021.

[8] W. Lu, Z. Zhu, and B. Mukherjee, “On hybrid IR and AR service
provisioning in elastic optical networks,” J. Lightw. Technol., vol. 33,
pp. 4659–4669, Nov. 2015.

[9] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[10] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[11] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[12] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[13] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP),” RFC 1157, May 1990. [Online].
Available: https://tools.ietf.org/html/rfc1157.

[14] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Sept. 2001. [Online]. Available: https://tools.ietf.org/html/rfc3176.

[15] B. Claise, “Cisco systems NetFlow services export version 9,” RFC
3954, Oct. 2004. [Online]. Available: https://tools.ietf.org/html/rfc3954.

[16] S. Ha, I. Rhee, and L. Xu, “Cubic: A new TCP-friendly high-speed TCP
variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, Jul. 2008.

[17] M. Alizadeh et al., “Date center TCP (DTCP),” in Proc. of ACM
SIGCOMM 2010, pp. 63–74, Aug. 2010.

[18] G. Abbas, Z. Halim, and Z. Abbas, “Fairness-driven queue management:
A survey and taxonomy,” IEEE Commun. Surveys Tuts., vol. 18, pp.
324–367, First Quarter 2016.

[19] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[20] INT dataplane specification. [Online]. Available: https://github.com/
p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf.

[21] Z. Xu, S. Tang, and Z. Zhu, “Entropy-driven adaptive INT and its
applications in network automation of IP-over-EONs,” IEEE J. Sel. Top.
Quantum Electron., vol. 28, pp. 1–13, Mar. 2022.

[22] S. Tang, J. Kong, B. Niu, and Z. Zhu, “Programmable multilayer INT:
An enabler for AI-assisted network automation,” IEEE Commun. Mag.,
vol. 58, pp. 26–32, Jan. 2020.

[23] F. Cugini et al., “P4 in-band telemetry (INT) for latency-aware VNF in
metro networks,” in Proc. of OFC 2019, pp. 1–3, Mar. 2019.

[24] F. Paolucci, D. Scano, P. Castoldi, and E. Paoli, “Latency control in
service chaining using P4-based data plane programmability,” Comput.
Netw., vol. 216, p. 109227, Oct. 2022.

[25] A. Alcoz, A. Dietmuller, and L. Vanbever, “SP-PIFO: Approximating
push-in first-out behaviors using strict-priority queues,” in Proc. of NSDI
2020, pp. 1–19, Feb. 2020.

[26] Z. Yu et al., “Programmable packet scheduling with a single queue,” in
Proc. of ACM SIGCOMM 2021, pp. 179–193, Aug. 2021.

[27] Z. Li, Y. Hu, L. Tian, and Z. Lv, “Packet rank-aware active queue
management for programmable flow scheduling,” Comput. Netw., vol.
225, p. 109632, Feb. 2023.

[28] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, pp. 435–446, Aug.
2013.

[29] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, Jun. 2019.

[30] S. Tang et al., “Sel-INT: A runtime-programmable selective in-band
network telemetry system,” IEEE Trans. Netw. Serv. Manag., vol. 17,
pp. 708–721, Jun. 2020.

[31] A. Sgambelluri et al., “Exploiting telemetry in multi-layer networks,” in
Proc. of ICTON 2020, pp. 1–4, Jul. 2020.

[32] M. Anand, R. Subrahmaniam, and R. Valiveti, “POINT: An intent-driven
framework for integrated packet-optical in-band network telemetry,” in
Proc. of ICC 2018, pp. 1–6, May 2018.

[33] P. Goyal, H. Vin, and H. Cheng, “Start-time fair queueing: A scheduling
algorithm for integrated services packet switching networks,” IEEE/ACM
Trans. Netw., vol. 5, pp. 690–704, Oct. 1997.

[34] F. Checconi, L. Rizzo, and P. Valente, “QFQ: Efficient packet scheduling
with tight guarantees,” IEEE/ACM Trans. Netw., vol. 21, pp. 802–816,
Oct. 2012.

[35] X. Li et al., “RPQ: Resilient-priority queue scheduling for delay-
sensitive applications,” in Proc. of HPSR 2022, pp. 1–6, Jun. 2022.

[36] P4Runtime specification. [Online]. Available: https://p4.org/p4-spec/
p4runtime/main/P4Runtime-Spec.html.

