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Abstract—The rapid development of deep space exploration
missions has led to the continuous expansion of interplanetary
networks (IPNs) for enhanced data transfer capacities and
reliability. In this paper, we propose a novel deep reinforcement
learning (DRL) framework for optimizing the scaling of IPN
topologies (i.e., the placement of relay satellites), such that the
routing and data scheduling of interplanetary data transfer
(IP-DT) in the scaled IPN achieves maximized performance
gain. Our proposal leverages graph neural networks (GNNs)
to extract topological correlations within an IPN and hereby
learns progressive local rewriting policies for approaching the
optimal solution. Extensive simulations verify the effectiveness
and robustness of our proposal, showing that the learned relay
satellite placements facilitate higher reliability (in terms of data
delivery ratios) and lower end-to-end latency for different IPN
scenarios, when compared with the existing benchmarks.

Index Terms—Interplanetary network, Delay tolerant network,
Topology scaling, Deep reinforcement learning.

I. INTRODUCTION

With the continuous increase of deep space (DS) exploration

missions, interplanetary networks (IPNs) have been developed

rapidly in recent years and gained much attention globally [1].

IPNs provide communication and data relay services among

planetary bodies, satellites and spacecrafts [2], differentiating

them broadly from the cases in terrestrial networks [3–14]. In

particular, interplanetary data transfer (IP-DT) faces unique

challenges in dynamic and unstable topologies caused by

the movement and obstruction of network nodes and limited

bandwidth and extremely long delays due to vast distances

in DS communications. These challenges can be partially

overcome by delay tolerant networking (DTN) [15, 16], which

improves the reliability and efficiency of IP-DT over unreliable

and ultra-long-latency links using store-carry-forward (SCF).

Current IPNs typically employ sparse network topologies or

even point-to-point architectures [17]. However, the vigorous

development of DS exploration missions [18–20] will demand

universal and multi-hierarchy IPN architectures to support

enlarged network dimensions and traffic volumes. Previous

studies have reported inspiring progresses on optimizing the

routing, data scheduling and rate control for IP-DT, but all

assumed fixed topology configurations [21–24]. Note that,

as IPNs scale up, bandwidth bottlenecking exacerbates and

presents a major obstacle to improving the performance (ca-

pacity, latency, etc.) of IP-DT. This issue can hardly be worked

out directly given the ultra-long link lengths and complex

Earth
Mars

Venus

Sun

Satellite

Relay satellite

Ground station

Rover

Domain

Fig. 1. Example on IPN topology scaling.

electromagnetic environment in the universe. More important-

ly, the lossy and disruptive links of IPNs make reliability a

critical concern under fixed topology configurations. In this

context, IPN topology scaling that leverages relay satellites

to augment link capacities and reachability while reducing

communication latencies (as shown in Fig. 1) emerges as

a promising solution. Nevertheless, the dynamic nature of

IPN necessitates joint optimization of the planning of relay

satellites and the routing and data scheduling for IP-DT, taking

into account the motions and relative positions of all the nodes.

This makes IPN topology scaling very challenging.

Existing studies on IPN topology scaling [25, 26] primarily

highlighted the benefits of multi-hop DS communications

while treating the planning of relay satellites as a static ge-

ometric optimization problem. They overlooked the interplay

between relay satellite placement and routing and scheduling

of IP-DT. Recently, the authors of [27] formulated a joint

optimization of the planning of relay satellites and the routing

and data scheduling for IP-DT, but their proposal relied

on simple yet fixed heuristic policies to solve the complex

nonlinear optimization, and thus could hardly find effective

solutions in large-scale IPN settings. On the other hand, deep

reinforcement learning (DRL) has been shown to achieve

beyond human-level performance in many dynamic control

tasks [28]. DRL takes advantage of the powerful representation

ability of deep neural networks (DNNs) to learn successful

policies through repeated trials and errors, hereby eliminating

the need for deriving explicit mathematical expressions for tar-



get optimizations. This makes DRL also a promising technique

for solving complex combinatorial optimizations [29–31].

In this paper, we develop a DRL framework for solving the

optimization of IPN topology scaling in a progressive manner.

Our DRL framework leverages graph neural networks (GNNs)

to extract meaningful representations of IPN topologies from

carefully-structured graph inputs. Aided by the GNNs, the

proposed DRL agents learn the local rewriting (orbital pa-

rameter adjustment) policies that facilitate efficient search of

the optimization space, and consequently, gradually approach

the optimal placement of relay satellites such that the routing

and data scheduling of IP-DT in the scaled IPN achieves

maximized performance gain. More specifically, the major

contributions of this work include:

• We propose, for the first time to the best of our knowl-

edge, a DRL framework that can effectively solve the

joint optimization of the planning of relay satellites and

the routing and data scheduling for IP-DT.

• We model the state of a dynamic IPN as graph-structured

data and utilize GNNs to learn the local rewriting policies

that guide progressive approach to the optimal solutions.

• Extensive simulations under different settings of the orig-

inal IPN topology and the budget for new relay satellites

verify that our proposal can obtain the effective IPN

scaling solutions, which consistently outperform existing

benchmarks in terms of the delivery ratio and average

end-to-end (E2E) latency of bundles.

II. RELATED WORK

Routing and data scheduling for IP-DT is a fundamental

problems in IPNs, which can be addressed either separately

or jointly. Most representatively, the National Aeronautics and

Space Administration (NASA) proposed and standardized the

contact graph routing (CGR) algorithm [32] that calculates

an SCF route for each bundle over the time-varying topology

of an IPN based on scheduled communication contacts. The

data scheduling problem for IP-DT was first studied in [21].

Aiming at reducing the queuing delay, the authors designed

an algorithm that adjusts the transmission orders of queued

bundles considering multiple attributes of them (e.g., size

and priority). In [22, 24], Tian et al. conducted an in-depth

study on the joint optimization of distributed routing and data

scheduling for IP-DT, and achieved noticeable performance

improvement in terms of E2E latency and throughput under

high traffic loads, while ensuring good scalability.

Existing studies on routing and data scheduling for IP-

DT mostly assume fixed IPN topologies. However, the rapid

development of DS missions, especially with the introduction

of relay satellites, has led to expanding IPN topologies con-

tinuously [25]. Consequently, considering the IPN topology

scaling that introduces multi-hop DS communications facilitat-

ed by new relay satellite deployment becomes imperative. The

merits of IPN topology scaling have been embodied by several

previous studies, such as commutating rings, minimal Earth

rings, and elliptical transfer between planetary orbits [25].

A linear-circular commutating chain topology was proposed

in [33] to improve the throughput of Earth-Mars communi-

cations. Two-hop relay schemes based on Sun-Earth L4/L5

Lagrange points were studied in [34, 35]. Later in [26], Wan

et al. presented a Solar System satellite relay constellation

network topology designed to boost the bandwidth between

Earth and Mars. Nevertheless, all these studies unanimously

treated the deployment of relay satellites as a static geometric

problem, which simply optimizes the link lengths in expanded

IPNs. Therefore, they failed to address the joint optimization

of the relay satellite orbit parameters and the routing and data

scheduling for IP-DT, which could plausibly compromise their

performance in dynamic DS missions.

The recent study in [27] filled the aforementioned gap and

for the first time, investigated the joint optimization of the

planning of relay satellites and the routing and data scheduling

for IP-DT, exploring comprehensive and dynamic topology

evolution strategies to better adapt to the evolving demands of

DS missions. However, the proposed mixed integer nonlinear

programming model and heuristic algorithm either suffer from

scalability issues or may produce suboptimal solutions when

tackling large-scale problems. In this work, we opt for a DRL-

based approach to overcome such limitations, as DRL has

exhibited superior performance in many network planning and

optimization tasks (e.g., routing [36], planning [31], and re-

configuration [37, 38]). The application of DRL in IPN routing

and scheduling has also been explored by [23]. Nonetheless,

solving the joint optimization of relay satellite placement,

orbital parameters, routing and data scheduling with DRL is

never a trivial task, which necessitates careful remodeling of

neural network structure, action space and reward function.

III. PROBLEM STATEMENT

We symbolize the time-varying topology of an IPN by

Gt(V,Et), where V and Et represent the sets of nodes and

temporal links at time t, respectively. Each directed temporal

link et(u, v, ts, te, r, τ) ∈ Et connects node u to node v, with

[ts, te] being the contact duration, r being the data-rate, and

τ being the transmission latency. An IPN topology is further

divided into a set of domains H = {Hj} based on celestial

bodies (see Fig. 1). We augment inter-domain links by deploy-

ing relay satellites using circular orbits centered on the Sun.

For economic considerations, the number of relay satellites is

restricted to be K. Then, we can sketch an IPN topology by its

backbone representation G̃t(Ṽ , VR, Ẽ
t), where each domain

is abstracted as a virtual node ṽ ∈ Ṽ and the edges (in Ẽt)

signify the communication links between domains or between

domains and relay satellites in VR. We use a polar coordinate

system with the Sun being the pole and the Earth-Sun ray at

t = 0 being the polar axis. Thus, the location of a node v at

time t can be expressed as P (v, t) = (ρ(v, t), θ(v, t)), where

ρ(v, t) is its radius in astronomical units (AU, ∼ 1.496× 108

kilometers) and θ(v, t) is the phase. We model the operation of

an IPN as a discrete-time system, where each node configures

its IP-DT scheme at the beginning of every time slot (TS)

Δt. Ultimately, the topology scaling problem is stated as:

optimizing the placement of VR so that the IPN performance



in a macro level, i.e., the cumulative performance gains over
a long trajectory of TS’s (say, a few years), is maximized.

Variables:
• P (v, 0) = (ρ(v, 0), θ(v, 0)) , ∀v ∈ VR: initial positions of

relay satellites.

• xũ,ṽ
et , ∀ũ, ṽ ∈ Ṽ , et ∈ Ẽt: Boolean variable for inter-

domain routing, where xũ,ṽ
et equals 1 if et is traversed

by the routing path for ũ→ṽ at TS t, and 0 otherwise.
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Fig. 2. Framework and process of our proposal.

Objective:
The optimization objective is to minimize the time-averaged

total IP-DT latency among all the domains, i.e.,

Minimize J =
1

|T |
∑

{ũ,ṽ∈Ṽ ,ũ �=ṽ}

∑
t∈T

Lũ,ṽ
t , (1)

where T = {0,Δt, 2Δt, · · ·, NΔt} is the evaluation period

and Lũ,ṽ
t is the IP-DT latency between domains ũ and ṽ at

TS t, which is determined by the routing scheme (i.e., xũ,ṽ
et )

and the data rates of inter-domain links [27].
Specifically, Lũ,ṽ

t consists of propagation delay and queuing

delay. The propagation delay can be easily got by calculating

the total path distance, according to the real-time positions of

planets and relay satellites derived from their orbital parame-

ters and the laws of mechanics. To obtain the queuing delay,

we model the processing of bundles in an outgoing queue as

a birth-death Markov chain, which can be characterized by an

M/G/1 queuing system. As such, the average delay a bundle

experiences in an outgoing queue is expressed as,

TM/G/1 =

(
τ2
l + σ2

l

2 · τl

)
·
(

1

rũ,ṽt − λ · τl

)
, (2)

where τl and σl represent the mean and standard deviation

of bundle sizes, respectively, and rũ,ṽt is the data rate (i.e.,
processing capacity) of the queue. rũ,ṽt is determined by the

data rate bottleneck of all the links along the path, i.e.,
rũ,ṽt ≤ xũ,ṽ

et
· re

t

, ∀et ∈ Ẽt. (3)

Therein, re
t

is the data rate of link et. It can be derived under

the assumption of optimal channel coding in an additive white

Gaussian noise (AWGN) channel model:

re
t

= α · Cet = B · log2

[
1 + ε · 1(

Det
)2

]
, α ∈ (0, 1), (4)

where Cet is the channel capacity, B is the channel bandwidth,

and ε denotes the ratio between the signal-to-noise ratio (SNR)

and the reciprocal of the squared link distance, i.e., 1

(Det)
2 .

SNR is related to the link’s physical parameters, such as

antenna gain and power. Finally, we obtain Lũ,ṽ
t as,

Lũ,ṽ
t = TM/G/1 +

Dũ,ṽ
t

c
, (5)

where Dũ,ṽ
t is the total path length and c is the speed of light.

Overall, our formulation for IPN topology scaling harmo-

nizes the orbital parameters (orbital radius and initial phase)

of each relay satellite to improve the long-term IP-DT per-

formance in terms of E2E latency, which implicitly translates

into the optimization of data rate, bundle delivery ratio, and

latency of inter-domain links in each TS t.

IV. DEEP REINFORCEMENT LEARNING DESIGN

In this section, we elaborate on the DRL design for solving

the aforementioned optimization.

A. Model Overview

Fig. 2 shows the schematic of the proposed design, featuring

the major components of DRL agents and their interactions

(marked by solid arrows with step numbers) with an IPN

simulation environment for progressive learning of the opti-

mal solutions. The environment implements the IPN network

model described in the previous section and runs discrete-time

simulations to evaluate IPN performance metrics based on the

topology scaling solutions generated by the DRL agents. Note

that, the solutions provided by the DRL agents decide only

the initial positions of the relay satellites, while the simulator

assesses the long-term performance over T by calculating

time-varying node positions and routing schemes. The learning

process starts with the DRL agents rewriting a random relay

satellite placement P (v, 0). In particular, each agent reads IPN

state data and outputs an action that deviates the current solu-

tion locally by ΔP (Steps 1-3). The simulation environment

reevaluates the objective function with the updated solution

(i.e., P (v, 0)+ΔP ), which is then translated into a numerical

reward for the agent (Steps 4-6). The tuple of the state, action

and reward is pushed into the experience buffer. Steps 1-

6 are repeated for iterations until the termination condition

is satisfied, allowing the agents to search the solution space

adequately. Meanwhile, we perform periodical training with

samples from the experience buffer to update the policies

(parameterized by DNNs) of the agents (Steps 7-9).

B. DRL Agents

We design DRL agents based on the asynchronous advan-

tage actor-critic (A3C) framework, which employs multiple

agents interacting with independent environments in parallel

for searching the solution space effectively. Fig. 3 shows the

structure of an agent, which makes use of an actor network for

policy generation and a critic network for evaluation purposes.

The two networks adopt the same architecture for feature

extraction but use different readout modules. Details about the

DNN architectures will be provided later.
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State: the IPN node positions and link data rates are key

information for the decision making of DRL agents. We

encode these information as graph-structured data, where each

graph instance sn ∈ S is composed of nodes representing

domains or relay satellites and edges corresponding to the

communication links at the n-th iteration of optimization.

Each node v ∈ Ṽ ∪ VR is conveyed by a three-dimensional

feature vector [ρ(v, 0), θ(v, 0), κ], indicating the node’s initial

orbital parameters and whether the node corresponds a domain

(κ = 0) or a relay satellite (κ = 1).

Action: the agents take an action an(v) to modify the orbital

parameters of each relay satellite v. We reduce the action

space by making the agents select one from five local rewriting

strategies, namely, (i) increasing or (ii) decreasing ρ(v, 0) by

fixed step size Δρ, (iii) increasing or (iv) decreasing θ(v, 0)
by fixed step size Δθ, and (v) staying unchanged.

Reward: the reward is defined as the performance gain

(latency reduction) brought by the local rewriting action, i.e.,
rn = η · (Jn−1 − Jn) + ζ · (M − Jn), (6)

where Jn denotes the latency at step n, M is a constant

represents the average latency determined through historical

data and priori analysis, and η and ζ are weight coefficients.

Then, by maximizing the long-term cumulative reward, we

guide the agents to move progressively to the optimal solution.

DNN Architectures: we parameterize the actor and critic

networks by GNNs owing to their powerful capabilities in

processing graph-structured data and generalizing arbitrary

topologies. As shown by Fig. 3, the actor GNN (A-GNN)

and critic GNN (C-GNN) both use several GNN layers to

learn latent representations from graph inputs, which are then

pooled (averaging) and fed to the linear layers for outputting

a rewriting policy π(sn) for each node or a value estimation.

π(sn) indicates a probability distribution over the strategies

that guide action selection while the value estimation helps an

agent evaluate the quality of action taken.

The GNNs are built on a message-passing mechanism,

where each node aggregates the states of its neighbor nodes

to calculate a more comprehensive node representation. This

process is repeated for iterations (or layers), allowing the

nodes to extend their perceptive fields and learn graph-level

representations. The operations of a GNN layer include:

Algorithm 1: Training Procedure

1 Input: IPN topology Gt, and set of relay satellites VR;

2 construct initial topology scaling solution

P (VR, 0) = {(ρ(v, 0), θ(v, 0)) : ∀v ∈ VR};

3 set episode count C = 0 and experience buffer Φ = ∅;

4 while C < Cmax do
5 generate graph instance sn with Gt and P (VR, 0);
6 calculate π(sn) with A-GNN;

7 sample local rewriting actions an(v) with π(sn);
8 P (v, 0) ← P (v, 0) + an(v), ∀v ∈ VR;

9 compute rn with Equation (6);

10 Φ ← {Φ, {sn, an(v), rn}};

11 if |Φ| ≥ 2N − 1 then
12 compute the losses for A-GNN and C-GNN with

Equations (10) and (12) using {Φi : i < N};

13 calculate gradients of the loss functions;

14 apply gradients to the global GNNs;

15 load the global GNN parameters to update

A-GNN and C-GNN;

16 Φ ← {Φi : i ≥ N}, C ← C + 1;

17 end
18 end

• Message Passing: each node disseminates its state (node

representation) to its adjacent nodes.

• Aggregation: each node aggregates incoming messages.

• Update: each node updates its state based on the aggre-

gated information.

The above operations can be mathematically expressed as,

h(k+1)
v = σ

(
W · AGG

(
{h(k)

u : u ∈ N (v)}
))

, (7)

where h
(k)
v is the state of node v in the k-th layer, N (v)

contains the neighbors of node v, AGG denotes an aggregation

function (e.g., sum, mean, or max), W is a learnable weight

matrix, and σ is a non-linear activation function (e.g., ReLU)

to introduce non-linearity and enhance model expressiveness.

To facilitate more effective state aggregation, we bring in

the graph attention mechanism, i.e., graph attention networks

(GATs) [39]. GATs allow nodes to weight the importance

of their neighbors and focus on more relevant information,

e.g., the states of closer neighbors, making them promising

for handling combinatorial optimizations. In particular, GATs

assign an attention coefficient αu,v to each edge (u, v) as,

αu,v =
exp

(
LeakyReLU(ωT [Whu‖Whv])

)∑
v′∈N (v)

exp (LeakyReLU(ωT [Whv‖Whv′ ]))
, (8)

where ‖ denotes the concatenation operation, ωT is the

transpose of a learnable weight vector, and LeakyReLU is the

Leaky ReLU activation function. Then, message passing with

attention can be concretized as an activation function acting on

the weighted summation of the states of a node’s neighbors:

h(k+1)
v = σ

⎛
⎝ ∑

u∈N (v)

αuvWh(k)
u

⎞
⎠ . (9)

By using the powerful representation capabilities of GNNs and

attention mechanism of GATs, the model can potentially cap-



ture complex topological dependencies and dynamic changes

in IPNs, and learn successful topology scaling policies.

C. Training Procedure

Algorithm 1 summarizes the training procedure of a DRL

agent under the A3C framework, where multiple agents main-

tain a pair of global GNNs while each explores an independent

environment in parallel. Lines 2-3 are for initialization, where

we construct an initial topology scaling solution by randomly

placing a set of relay satellites VR for each agent, and reset

the episode count and experience buffer. Then, the while-loop

covering Lines 4-18 performs repeated trial and error of Cmax

episodes. Specifically, Lines 5-6 generate a graph instance

sn based on the IPN topology and current relay satellite

placement and call A-GNN to output a local rewriting policy

π(sn). Afterward, we sample a rewriting action an(v) for each

relay satellite v with π(sn) using the roulette method (Line 7)

and update the topology scaling solution accordingly (Line 8).

Lines 9-10 calculate the instant reward rn, which, together

with the state observation and action taken, are stored in the

experience buffer as a training sample. Once 2N − 1 samples

are collected, we performs training with Lines 12-14.
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Fig. 4. IPN topologies used in simulations.

In training, we set the goal of each agent at step n to be

maximizing the total discounted reward from the next N con-

tinuous operations. Hence, we can calculate the target values

for the first N samples in the buffer and use them as training

samples. The policy loss is defined as the negative product of

logarithmic action probability and temporal difference (TD)

error averaged over all the relay satellites and samples, i.e.,

Lϑa = − 1

N · |VR|

N−1∑
n=0

∑
v∈VR

δn · log (πϑa(sn, an(v))) , (10)

where πϑa
(sn, an(v)) signifies the probability of selecting

action an(v), ϑa is the collection of A-GNN weights, and

δn is the TD error (a.k.a. the advantage). δn is computed as

δn =

n+N−1∑
i=n

γi−nri − νϑc(sn), (11)

which indicates how much better an action turns out to be

than expected. Here, γ is the discount factor, νϑc
(sn) gives

the value prediction on sn, and ϑc is the collection of C-GNN

weights. Consequently, minimizing Lϑa
will reinforce actions

resulting larger advantages. The value loss is the average TD

error for minimizing the prediction error.

Lϑc =
1

N

N−1∑
i=0

δ2n. (12)

We calculate gradients of the loss functions with respect

to ϑa and ϑc and apply them to the global GNNs (Lines 13-
14). Finally, Lines 15-16 reload A-GNN and C-GNN with

the global weights, delete the used samples, and increase the

episode count by one to prepare for the next training.

The DRL agent is trained with the following configuration:

the neural network employs a hidden layer dimension of 128

with LeakyReLU activation functions, optimized using the

Adam algorithm at a learning rate of 10−4 to maintain training

stability. The A3C framework is deployed with 8 parallel

threads, each processing batches of 32 experiences collected

from distributed actors. The discount factor is set to γ = 0.9
to compute cumulative reward.

V. PERFORMANCE EVALUATION

We conduct simulations to compare our proposal with

existing benchmarks to verify its effectiveness and robustness.

A. Simulation Setup

Fig. 4 displays the 3-domain and 5-domain IPN topologies

(denoted as IPN-1 and IPN-2, respectively) used in simula-

tions. IPN-1 spans 3 domains (Earth, Moon, and Mars) and

consists of 8 nodes: a ground control center, 3 ground stations,

2 rovers, and 2 satellites. IPN-2 expands IPN-1 by including

also the Mercury and Venus systems (14 nodes in total).

We generate IPN scaling solutions for IPN-1 and IPN-2

with the proposed DRL-based approach and three existing

benchmarks, namely, “Lagrange” (deploying relay satellites at

the two Lagrange points L4 and L5 of Earth), and “LOTS” and

“MINLP” in [27]. For fair comparisons, all the approaches use

the same numbers of relay satellites. The obtained solutions

are assessed by bundle-level fine-grained IP-DT simulations

using the routing and data scheduling scheme developed in

[24]. Specifically, considering the planetary motion cycles,

we extract several time slices from a period of thousands of

days and conduct 24-hour simulations in each time slice. The

motions of IPN nodes are emulated using the Satellite Tool

Kit (STK) [40]. In a simulation, each IPN node generates

bundles dynamically according to a Poisson process. Bundles

are then assigned different priorities according to their sizes,

i.e., copper ([128, 1024] KBytes), silver ([16, 64] KBytes), and

gold ([1, 8] KBytes), following a ratio of 18:1:1. The average
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lifetime of a bundle is set as 10, 000 and 20, 000 seconds for

IPN-1 and IPN-2, respectively. To ensure statistical reliability,

each data point shown later is obtained by averaging the results

from 5 independent runs in the simulations.

B. Solving IPN Topology Scaling with DRL Training

Fig. 5(a) shows the evolution of cumulative reward received

by the DRL agents during the training under IPN-1 with

a budget of 2 relay satellites. The results indicate that the

performance of the learned solution improves steadily and

converges after training of ∼2, 000 episodes. To provide more

insights on how the agents approximate progressively toward

the optimal solutions, we sample and visualize the agents’

decision making at different training steps in Fig. 5(b). In

can be seen that the agents start with random movements of

relay satellites from the Earth’s orbit (centered on the Sun)

and gradually learn to place the two satellites in lower orbits

with phases closer to that of Mars (bottom right in the figure).

C. Comparisons with Benchmarks

Next, we compare our proposal with the benchmarks applied

to scaling IPN-1 with two relay satellites. Fig. 6 shows the IP-

DT performance of the yielded IPN expansions. Here, “BE”

refers to the original IPN-1 without adding new relay satellites.

Noticeably, scaling the IPN brings significant performance

gains in average E2E latency and bundle delivery ratio over the

original IPN configuration, and thereby, effectively enhances

the reliability of the IPN. The “Lagrange” approach provides

(a) Average E2E latency

(b) Average delivery ratio

Fig. 6. Results on scaling IPN-1 with two relay satellites.

the worst IPN scaling solutions, attributing to the fixed lo-

cations that it chooses to deploy relay satellites. Conversely,

by allowing the DRL agents to search the optimization space

intelligently, our proposal achieves the best performance.

Although “MINLP” solves the planning of relay satellites

exactly, its performance degenerates as a consequence of

compromise to model tractability, i.e., its operates on a pre-

processed discrete solution space to ensure time efficiency.

D. Evaluations on Model Robustness

To further verify the robustness of our proposal, we assess it

under different numbers of relay satellites and IPN topologies.

This time, we exclude “Lagrange” and “MINLP” considering

their inapplicability to larger-scale problem instances due to

either the intrinsic limitation (“Lagrange” can only place two

relay satellites at fixed locations) or high time complexity

(“MINLP”). In all the simulations, the traffic load is fixed

as one bundle/minute/node. Fig. 7 shows the results of E2E

latency and delivery ratio as a function of the number of relay

satellites using IPN-1. As expected, increasing the number of

relay satellites boosts IP-DT performance and the acceleration

of this gain slows down as bandwidth bottlenecks diminish.

Our proposal consistently outperforms the benchmark, proving

its robustness against different relay satellite configurations.

We also evaluate our proposal and “LOTS” using IPN-2

with different numbers of relay satellites. As the target values

and optimal policies with respect to different IPN topologies

vary, we get the solutions for INP-2 by fine tuning the agents

trained under IPN-1 in the new environment. The results are

shown in Fig. 8, which coincide with those in Fig. 7 and

further verify the universality of our DRL-based approach.



(a) Average E2E latency

(b) Average delivery ratio

Fig. 7. Scaling IPN-1 with different relay satellites.

(a) Average E2E latency

(b) Average delivery ratio

Fig. 8. Scaling IPN-2 with different relay satellites.

VI. CONCLUSION

In this paper, we proposed a DRL framework for solving the

complex optimization of IPN topology scaling, which needs to

jointly consider the planning of relay satellites and the routing

and data scheduling for IP-DT. Our proposal modeled the

states of an IPN as graph-structured data and utilized GNNs to

extract meaningful graph-level representations. Aided by the

GNNs, the DRL agents could learn effective local rewriting

policies that allow for progressive approximation to the op-

timal solutions in which the routing and data scheduling of

IP-DT achieves maximized performance gain in data transfer

reliability and latency. Extensive simulations using different

IPN topologies and budgets of relay satellites confirmed that

our proposal consistently obtains better scaled IPNs, which

deliver superior IP-DT performance over the existing bench-

marks. Future research directions include reframing the DRL

design to secure improved asymptotic performance with less

training steps and better generalization ability, and to explicitly

optimize network reliability and fault tolerance.
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