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st-SFC: Optimizing Dynamic Deployment of
Stateful SFCs on P4-based PDP Switches
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Abstract—With the rapid development of network function
virtualization (NFV), there is an increasing trend of implementing
virtual network functions (vNFs), especially the stateful ones, on
high-performance programmable data plane (PDP) switches (e.g.,
the P4-based PDP switches based on Tofino ASICs), and forming
stateful service function chains (SFCs) with them. However, the
capability of PDP switches on supporting stateful SFCs is still
restricted by the limited hardware resources in them. In this
work, we study how to optimize the deployment of stateful SFCs
in P4-based PDP switches and design the system of st-SFC, so as
to not only utilize the hardware resources on switches efficiently
but also minimize the overhead of interactions between control
and data planes. We first consider the deployment of stateful
SFCs on a single PDP switch. Specifically, we propose to abstract
each stateful vNF as a state machine and design a stateful SFC
building algorithm to merge the state machines of vNFs for
reducing redundant resource usages, and for the vNFs whose
operations involve interactions with the control plane, we develop
a PktIn-Table to reduce the resource usage in PDP switches and
the interaction latency. Then, we propose an SFC deployment
algorithm that realizes stateful SFCs on PDP switches on demand,
aiming to optimize the resource usages across all the switches in
runtime. We prototype st-SFC with PDP switches based on Tofino
ASICs and demonstrate its effectiveness experimentally.

Index Terms—Service function chain (SFC), Stateful packet
processing, Programmable data plane (PDP), P4.

I. INTRODUCTION

NOWADAYS, network function virtualization (NFV) [1]
has become one of the key technologies to accommodate

the ever-increasing traffic, users, and applications in the Inter-
net [2, 3]. Specifically, NFV addresses the shortcomings of the
traditional way of deploying network services with special-
purpose middle-boxes (e.g., low cost-effectiveness, complex
maintenance, and long time-to-market) by decomposing net-
work services into the virtual network functions (vNFs) that
can be instantiated on general-purpose software and hardware
platforms. Therefore, service providers (SPs) can deploy net-
work services in a much more cost-efficient and timely way:
instantiating the vNFs of a network service on general-purpose
platforms on demand and steering traffic through the vNFs in
sequence to form a service function chain (SFC) [4–8].

Note that, vNFs can be instantiated on both software plat-
forms (e.g., virtual machines and containers) and hardware
platforms (e.g., bare metal servers and programmable data
plane (PDP) switches) [9]. Among the NFV platforms, the
PDP switches based on Tofino ASICs [10] are gaining more
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and more attention recently, due to their high-throughput
packet processing at line-rates of up to 100 Gbps, low latency
in sub-microseconds, and the protocol-independent switch
architecture (PISA) that benefits from P4 programmability
[11]. Their packet processing capability can perfectly adapt to
the recent advances on fiber-optic networking [12–16]. Hence,
people have leveraged such P4-based PDP switches to develop
various network services with vNFs and demonstrated superior
packet processing performance [17–23]. However, the PDP
switches’ capability of supporting NFV is still restricted by
the limited hardware resources in them. Specifically, if we
want to deploy an SFC on one PDP switch, the number of
pipeline stages in the switch restricts the length and logical
complexity of the SFC, while the memory resources in each
stage, which can be 1.28 MB of static random-access memory
(SRAM) and 67.6 KB of ternary content-addressable memory
(TCAM) [24], limits the number of flows that can use the
SFC. This makes it critical to optimize the resource allocation
in the switch’s pipeline when deploying SFCs there.

Previous studies have tackled the problem of allocating
memory in PDP switches to deploy various SFCs in their
pipelines [25–29]. Nevertheless, they only considered stateless
SFCs, which may suffer from the latency and bandwidth over-
heads caused by frequent interactions with the control plane
when the network environment is highly dynamic. Therefore,
researchers have tried to retain certain state information on
PDP switches and realize stateful SFCs1 with P4 programming
primitives and registers to achieve ultra-low processing latency
and high throughput [30–34]. Although the registers in a PDP
switch can be leveraged to realize stateful packet processing
[35], the number of registers and their actions are so limited
that a wide range of stateful vNFs can hardly be supported
simultaneously. For example, the actions of the registers in
certain Tofino ASICs can only support two or fewer con-
ditional statements [10], which makes it infeasible to fully
accommodate some classic stateful vNFs, e.g., the TCP-based
stateful firewall, leading to inevitable interactions with the
control plane for state updates [20, 21]. Meanwhile, there are
other types of stateful vNFs (like heavy hitter), which may
consume many registers to store state information. Hence, it
is relevant to study how to successfully deploy various stateful
vNFs in PDP switches and optimize their resource allocations,
to not only assign hardware resources to vNFs efficiently but
also minimize the interactions between control and data planes.

1In this work, we distinguish stateful and stateless vNFs based on whether
they store per-flow/per-packet information in the data plane, and thus stateful
load balancer and network address translator (NAT) are also considered as
stateful, not only the vNFs that rely entirely on the data plane for state updates.
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To this end, it is of great importance to design a widely-
applicable approach that can orchestrate various stateful vNFs
to realize SFCs with them in PDP switches. First of all, in the
face of a wide variety of stateful vNFs, we need to define a
generic way to classify them and decompose each vNF in fine-
grained logic unit combinations accordingly. Note that, due to
the variety and amount of vNFs that need to be supported
in an NFV system, treating each vNF as atomic during SFC
deployment (e.g., the scheme in [36]) might not be resource-
efficient, and thus we have to consider merging vNFs to reduce
the redundant logic units. Second, we need to clarify how to
leverage P4 programming primitives and hardware resources to
realize the logic units in the pipelines of PDP switches. Lastly
and most importantly, a highly-efficient vNF merging method
should be designed to merge various vNFs based on their logic
unit combinations and the available hardware resources in each
PDP switch, to minimize resource usage. Here, we hope to
point out that it is not good enough to only merge the same
tables in vNFs (like the method proposed in [35]) since it is
also possible to merge tables of different types.

In this work, we propose, implement, and demonstrate an
aforementioned widely-applicable approach, namely, st-SFC,
which can deploy stateful SFCs in P4-based PDP switches to
not only utilize the hardware resources on switches efficiently
but also minimize the overhead of interactions between control
and data planes. We first leverage the idea of improved state
machine [37] to abstract each stateful vNF as a state machine
that consists of a state transition module and an action module.
Then, we propose a stateful SFC building algorithm to merge
the state machines of vNFs of different types for reducing
redundant resource usages in PDP switches. Meanwhile, for
the vNFs whose operations involve interactions with the con-
trol plane, we design a PktIn-Table to reduce the resource
usage in PDP switches and the interaction latency. Next, we
develop an SFC deployment algorithm that realizes stateful
SFCs on PDP switches on demand, aiming to optimize the
hardware resource usages across all the switches in runtime.
Finally, we prototype st-SFC with PDP switches based on
Tofino ASICs and commodity servers and demonstrate its
performance experimentally. Our results verify that st-SFC can
provision dynamic SFC requests with high resource-efficiency,
and outperform benchmarks in terms of resource utilization
and interaction latency between control and data planes.

The rest of the paper is organized as follows. We briefly
survey the related work in Section II. Section III describes
our proposal of abstracting stateful vNFs as state machines
and building SFCs accordingly. The algorithm for deploying
stateful SFCs across PDP switches is explained in Section IV.
In Section V, we discuss the implementation and demonstra-
tion of st-SFC. Finally, Section VI summarizes the paper.

II. RELATED WORK

Previously, there have been a number of studies on how to
deploy stateful vNFs on PDP switches. Some of them focused
on realizing a specific type of vNFs, such as heavy hitter [17],
stateful firewall or packet filter [20, 21], stateful load balancer
[18, 22, 23], fast rerouting engine [19], and stateful NAT [23].

As they only considered a single type of vNFs, their solutions
were neither generic enough to support a wide variety of vNFs
nor capable of deploying an SFC that consists of multiple
vNFs. In order to find a generic way of deploying various
vNFs in a PDP switch, the proposals like OPP [30], FlowBlaze
[32], and SDPA [37] considered various system architectures
to define the improved state machines for stateful vNFs, and
researchers also tried to develop customized-designs of PDP
switches specifically for supporting stateful packet processing
[31, 33, 34], e.g., the authors of [31] proposed a PDP switch
that can realize line-speed stateful packet processing and be
programmed with DOMINO, which is a C-like high-level
language. However, all these approaches were not based on
P4-based PDP switches that equip Tofino ASICs.

For deploying stateful vNFs on P4-based PDP switches with
high resource-efficiency, one needs to merge vNFs to reduce
redundant resource usages. Previous investigations in [25–29]
have considered how to merge P4 programs. Nevertheless,
they did not address the P4 programs for stateful vNFs, and
thus their schemes were not fine-grained enough for merging
stateful vNFs. To realize an SFC that consists of multiple
vNFs on a P4-based PDP switch, people have tried to pre-
deploy various vNFs in the switch’s pipeline and steer traffic
through them by leveraging recirculation [38, 39]. However,
using recirculation in a PDP switch degrades the performance
of line-speed packet processing in its pipeline, especially
when an SFC includes many vNFs whose sequence cannot be
determined in advance. Although recirculation can be avoided
if the SFC is deployed on a “big switch” that groups multiple
PDP switches [29], resource-efficiency will be degraded. There
were also other studies on deploying SFCs on P4-based PDP
switches [36, 40–44], but they focused on enabling runtime
reconfigurability of SFCs deployment. Hence, they did not
optimize the tradeoff between resource-efficiency and packet
processing performance, and thus are irrelevant to this work.

pSFC [35] considered fine-grained table entry merging to
reduce the redundant logic units in stateful SFCs, but it only
tried to merge the same tables in stateful vNFs. Moreover, it
only addressed the stateful vNFs that fully rely on the registers
in PDP switch for state updates. These two issues limit its
universality, and our st-SFC can address them properly.

III. STRATEGIES FOR BUILDING STATEFUL SFC

In this section, we design the strategies for st-SFC to
decompose stateful vNFs, merge their state machines, and
update their states by interacting with the control plane.

A. Pipeline Model for P4-based PDP Switch

To explain our proposal clearly, we establish the following
model for the pipeline in a PDP switch and the SFCs deployed
in it. We denote an SFC that consists of n stateful vNFs as
S = {V1, · · · , Vn}, where each vNF Vi can be decomposed
into mi logical units as Vi = {Li,1, · · · , Li,mi

}, which can
be match action tables (MATs) {ti,u}, register actions {Ri,u},
individual actions {Ai,u}, and conditional nodes {ci,u}. The
relation between logic units Li,u and Li,v is represented by a
binary variable d(v,u), which equals 1 if Li,v depends on Li,u
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Fig. 1. Example on abstracting a stateful vNF as a state machine.

(i.e., Li,u should be executed before Li,v), and 0 otherwise.
Each MAT ti,u can be denoted as a tuple ti,u = {tMi,u, tAi,u},
where tMi,u and tAi,u are the sets of match items and actions
in the MAT, respectively. Each register action Ri,u is also a
tuple Ri,u = {RI

i,u, R
A
i,u}, where RI

i,u is the unique index of
the register referred by it and RA

i,u is the set of actions that
can be performed on the register.

B. Strategy for Decomposing Stateful vNFs

To deploy SFCs that consists of stateful vNFs in the pipeline
of a PDP switch with high resource-efficiency, we need to find
a generic way to decompose various stateful vNFs into fine-
grained logical units, so as to facilitate the subsequent merging
of vNFs. Hence, we propose to abstract each stateful vNF as
a state machine that consists of a state transition module (ST-
M) and an action module (A-M), as shown in Fig. 1. Each
packet entering the vNF is first processed by the ST-M, which
maintains the state information of the vNF (e.g., per-packet
state, per-flow state, and link state) based on internal (captured
locally by the PDP switch) or external (informed by the control
plane) events, to obtain the current state of the vNF. Next,
the A-M matches to certain field(s) in the packet and applies
proper action(s) to it according to the matching result and
the current state. We implement the ST-M and A-M with the
MATs and registers in the switch pipeline. Note that, certain
stateful vNFs may also include pre-processing (e.g., hash), and
thus a more generic model of stateful vNF should include the
ST-M, A-M and a preprocessing module (P-M). Based on their
operation principles and the involvement of the control plane
in them, we classify stateful vNFs into three categories.

The first category is for the vNFs that can solely rely on
the switch pipeline to realize stateful packet processing (e.g.,
the heavy hitter detector). In this case, as shown in Fig. 2(a),
the ST-M can be realized with a register action, where the
register index can be determined by the flow characteristics of
a packet, such as the hash value of its 5-tuple, and the set of
actions defines the state transitions. The A-M can be realized
with an MAT that matches to the current state of the vNF (and
certain field(s) in each packet) to obtain the actions to apply.

The second category is for the vNFs whose state transitions
need the assistance from the control plane, like a stateful
firewall. As shown in Fig. 2(b), the ST-M of a vNF in this
category can still be realized with a register action, but the state
updates in it are driven by the control plane. Therefore, the
ST-M also includes a digest module that works as the interface
to interact with the control plane. The implementation of the
A-M is the same as that in the first category.

The third category is for the vNFs that use the entries of
MATs instead of registers to store their state information, such
as stateful load balancer and stateful NAT. As shown in Fig.

(a) First category

(b) Second category

(c) Third category

Fig. 2. State machine implementations for three categories of stateful vNFs.

2(c), the ST-M is realized solely in the control plane this
time, while the A-M is an MAT that matches to certain packet
field(s). When the state of the vNF changes, the control plane
updates the MAT to modify its match items or/and actions.

C. Strategy for Merging Stateful vNFs
After abstracting each vNF as a state machine and decom-

posing it into the ST-M and A-M, we merge the resulting logic
units (MATs and register actions) to reduce redundant resource
usages, with the following three types of merging principles.
• Exact Merge: If two logic units in two vNFs are exactly

the same, we can merge them [35]. Here, we say two
logic units are the same if they are of the same type and
have the same elements. For example, two MATs ti,u and
tj,v are the same, if we have tMi,u = tMj,v and tAi,u = tAj,v .

• Same Action Merge: If two logic units only contain the
same actions, we can also merge them. This principle is
usually used to merge the A-Ms in different vNFs. For
instance, two MATs ti,u and tj,v can be merged with this
principle if we have tMi,u 6= tMj,v but tAi,u = tAj,v .

• Same Match Merge: With this principle, we can merge
the logic units that only have the same match items.

To the best of our knowledge, the last two merging principles
have not been explored in the literature. Therefore, we intro-
duce two illustrative examples in Fig. 3 to explain them and
show why resource-efficiency can be improved by them.
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Fig. 3(a) shows an example on the same action merge. In
this work, to save hardware resources, we define the state of
each stateful vNF as a bitmap. For instance, the binary state
values of the first MAT are {0001, 0000}, where the lowest
bit is the significant bit in the MAT’s state value, while the
state values of the third MAT are {0100, 1000, 0000}, where
the two highest bits are the significant bits. We can see that
the three MATs use the same action “output to Port 1”, and
thus we can merge the entries in them to get a common one
with a state value as 0111 = 0001+0010+0100. Meanwhile,
the state value of the original entry for “output to Port 2” in
the third MAT gets changed to 1011 = 0001 + 0010 + 1000,
to avoid the drop cases in the first and second MATs. This is
because in a PDP pipeline, the action of “drop” has the highest
priority when a positive match is encountered, i.e., a packet
will be dropped immediately if it matches to any entry for
dropping in an MAT. Therefore, in Fig. 3(a), when merging
the MATs to get the entry for “output to Port 2”, we merge
the entry of “output to Port 2” in the last MAT with those of
“output to Port 1” in the first two MATs, to avoid dropping
packets incorrectly. If we assume that the sizes of the match,
state and action in the MATs are 16, 8 and 8 bits, respectively,
the table entries in the three MATs before merging consume a
total of 128 bits of SRAM, while the merging reduces SRAM
usage to 64 bits2. On the other hand, if we only merge the
first two MATs, the saved SRAM will be reduced to 32 bits.

Fig. 3(b) explains the same match merge. Here, two MATs
t1,u1

and t2,u2
contain the same match, i.e., tM1,u1

= tM2,u2
.

Then, we can merge the MATs to generate a new one that
performs both actions {tA1,u1

, tA2,u2
} after a positive match of

tM1,u1
has been obtained. In this way, if we assume that the

sizes of the match and action in the MATs are 16 and 8 bits,
respectively, the merging saves 16 bits of SRAM.

D. Strategy for Interacting with Control Plane

As we have explained before, certain stateful vNFs cannot
accomplish their state updates solely in the pipeline of a
PDP switch, and thus need to interact with the control plane.
The conventional way of interacting with the control plane
in a PDP switch based on Tofino ASICs is to specify a
unified digest structure for uploading state information, which
includes all the information that can be uploaded by vNFs in
an SFC. This scheme is not efficient because an interaction for
state update might not need to upload all the state information
of the vNFs, and the resulting redundant bandwidth and
processing overheads will degrade the performance of the
interaction between the control and data planes, making it the
bottleneck of stateful packet processing.

To address the issue above, we design a PktIn-Table to
reduce the overheads due to interacting with the control plane.
As shown in Fig. 4, we denote each stateful SFC with a bitmap
and use each bit in it to represent a vNF that is in the SFC and
needs to upload state information to the control plane. Then,
the digest module checks the bitmap to encode a digest ID
and only upload the state information that is truly necessary.

2Note that, the entries for “drop” are default actions in the MATs and thus
do not occupy any memory.

(a) Same action merge

(b) Same match merge

Fig. 3. Examples of two proposed merging principles.

Fig. 4. Example on interacting with control plane with PktIn-Table.

For instance, in Fig. 4, the first entry in the PktIn-Table uses a
bitmap of 11100000 to denote the SFC that consists of vNFs
1-3, and assigns its digest ID as 1 to denote that its state
information to the control plane contains three fields, i.e., a
and b in 8 bits each and c in 16 bits. After receiving the
digest message for state information, the control plane parses
its digest ID to find the right procedure to process the state
information in it. For example, in Fig. 4, after receiving a
message with its digest ID as 1, the control plane invokes the
procedure to process the state information of a, b and c.

E. Algorithm for Building a Stateful SFC

With the strategies discussed above, we design Algorithm
1 to merge stateful vNFs in an SFC to generate a stateful
SFC. Line 1 first decomposes each vNF in a stateful SFC
S = {V1, · · · , Vn} into three modules (i.e., P-M, ST-M and
A-M) according to the strategy discussed in Section III-B.
Each module m contains a set of logical units, denoted as
Λn,m. Then, for each vNF Vi in S, we check the vNFs after
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Fig. 5. Example of an overall st-SFC building strategy consisting of 4 st-vNFs.

it. Specifically, we consider modules of the same type in Vi
and Vj and to see whether the logical unit Li,u in Λi,m can
be merged with Lj,v in Λj,m (Lines 2-14). Here, we say two
logic units Li,u and Lj,v are mergeable if the following two
conditions are satisfied: 1) one of the three merging principles
designed in Section III-C can be applied to merge them, and 2)
merging Li,u and Lj,v will not affect the operations of vNFs
Vi and Vj (i.e., the relations between logic units in them will
not be impacted). Hence, if two logic units Li,u and Lj,v are
mergeable, we merge them to L̃ and replace them with it to
save hardware resources (Lines 7-9). Finally, we find the vNFs
that need to interact with the control plane for state updates
and design PktIn-Table for them accordingly (Line 15).

Algorithm 1: Building a Stateful SFC by Merging vNFs
1 decompose each vNF in a stateful SFC S = {V1, · · · , Vn} into

P-M, ST-M and A-M, where the set of logical units contained
in each module m is Λn,m;

2 for each i ∈ [1, n− 1] do
3 for each j ∈ [i+ 1, n] do
4 for each m ∈ [1, 3] do
5 for each Li,u ∈ Λi,m do
6 for each Lj,v ∈ Λj,m do
7 if Lj,v can be merged with Li,u then
8 merge Lj,v and Li,u to replace them;
9 end

10 end
11 end
12 end
13 end
14 end
15 find the vNFs that need to interact with control plane and

design PktIn-Table accordingly;

Fig. 5 gives an example on building a stateful with merged
vNFs. We need to build an SFC that consists of a load
balancer (LB), a fast re-routing (FRR), a TCP firewall (FW),
and a heavy hitter (HH) in sequence. The vNFs are first
decomposed into logic units according to their categories
(defined in Section III-B), where LB and FRR belong to

the third category, FW and HH are in the second and first
categories, respectively. Then, the logic units of the vNFs are
merged as follows: 1) as the vNFs all include a logic unit
for calculating hash value with 5-tuple, the logic units can be
merged with the exact merge, 2) as both LB and FRR contain
an MAT whose match item is the 5-tuple of packet, the MATs
can be merged with the same match merge, and 3) as both
FW and HH use an MAT whose action is to forward packet
out, the MATs can be merged with the same action merge.
Finally, the configuration of the stateful SFC is shown in the
bottom of Fig. 5 with the merged logic units.

IV. DEPLOYING STATEFUL SFCS OVER PDP SWITCHES

In the previous section, we explain how to build a stateful
SFC by merging its vNFs, with the assumption that the SFC
will be deployed on one PDP switch. However, in a real-world
NFV environment, various stateful SFCs can be requested by
clients in runtime and the hardware resources in a PDP switch
might not always be sufficient for SFC deployment. Hence, in
this section, we extend st-SFC such that it can deploy stateful
SFCs over multiple PDP switches in runtime.

A. System Architecture for Runtime SFC Deployment

Fig. 6 shows the overall system architecture of st-SFC, to
support the deployment of stateful SFCs over multiple PDP
switches. The data plane is mainly built with P4-based PDP
switches, each of which includes a pipeline for SFC deploy-
ment and a local controller for control plane operations. Each
local controller can communicate with the global controller for
network-wide coordination. During system initialization, the
global controller downloads specific P4 programs to certain
PDP switches according to the output of the st-SFC deploy-
ment algorithm that will be discussed in the next subsection.
Then, during runtime, when a client requests to be served
with a stateful SFC, the global controller finds out which
switch pipeline(s) should serve the client flow to realize the
requested SFC, by leveraging a client flow routing algorithm.
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Fig. 6. Overall system architecture of st-SFC with multiple PDP switches.

Then, it installs corresponding table entries in the selected
PDP switch(es) to provision the requested SFC to the client,
without interrupting any in-service SFCs.

To realize the st-SFC system mentioned above, we first need
to accomplish runtime stateful SFC deployment. Due to the
variety of stateful SFCs and the limited hardware resources
in PDP switches, it is impractical to deploy a corresponding
P4 programm for each stateful SFC. Therefore, we try to pre-
deploy certain stateful SFCs, each of which is the superset of
a number of stateful SFCs, on PDP switches during system
initialization. In other words, each superset SFC can support
several types of SFCs, each of which uses part of the vNFs in
it. Then, in runtime, the client traffic of an SFC can be steered
through the SFC’s superset SFC by leveraging a dual-match
approach that considers both clients and flows. Specifically, we
index each client with a matching item, namely, Client Flag,
which refers to a packet field that can distinguish the clients,
e.g., source or destination IP address, and each flow of a client
is still be identified by its 5-tuple. Hence, when a packet enters
a logic unit in a superset SFC, the logic unit first matches to
its Client Flag to see whether it should be processed there. If
the logical unit is an MAT, a matching entry for Client Flag
is added. Otherwise, we can add a new MAT in the logic unit
with the matching item as Client Flag.

Fig. 7 provides an example on the procedure of runtime
stateful SFC deployment discussed above. Here, the pre-
deployed superset SFC contains LB, FRR, FW and HH in
sequence, and we need to provision three SFC requests in
runtime, which consist of LB→FRR→FW, LB→FW→HH,
and FW→HH, respectively. Then, by matching to the Client
Flag, the traffic of the three SFC requests can be distinguished
at each logic unit in the superset SFC and thus realize the
three SFCs simultaneously. As the adjustments related to the
Client Flag can be simply realized by the global controller
(i.e., installing the corresponding table entries in the related
PDP switches), they are hitless to in-service SFCs and thus
accomplish stateful SFC deployment in runtime.

B. Dynamic SFC Deployment and Traffic Routing

In order to utilize the limited hardware resources in PDP
switches efficiently for stateful SFC deployment, we model

the network topology as G(V, E), where V and E are the
sets of PDP switches and links in the network, respectively.
Therefore, there are |V| switch pipelines in the data plane, i.e.,
|V| P4 programs can be installed. Sv is the superset stateful
SFC that is deployed on a switch v ∈ V . In the network, N
types of stateful vNFs {V1, · · · , VN} are supported, i.e., each
stateful SFC Sv consists of part/all of the N types of vNFs.
To benefit both the SP and clients simultaneously, we set the
optimization objective is to provision as many stateful SFC
requests from clients as possible, while hoping that the average
end-to-end (E2E) latency of all the provisioned SFCs is also
minimized. Deploying the longest possible superset SFC on a
PDP switch can potentially increase the number of SFCs that
can be deployed on the switch. If the vNFs in an SFC cannot
be found on a single PDP switch, we have to make the traffic
of the SFC to go across switches, but this will increase the E2E
latency since the transmission latency incurred across switches
is much longer than the processing latency in a pipeline.

Algorithm 2: Dynamic Stateful SFC Deployment

1 k = 0, m = d |V|
2
e;

2 merge all the N types of vNFs to get a superset stateful SFC Ŝ;
3 if Ŝ can be accommodated in a PDP switch then
4 select m switches from V to deploy Ŝ on;
5 else
6 find m combinations of vNFs in {V1, · · · , VN}, which all

contain the most possible vNFs that can be accommodated
in a PDP switch and in all cover all the N types of vNFs;

7 merge the vNF combinations to get m superset stateful
SFCs and select m switches from V for 1-on-1 deployment;

8 end
9 while st-SFC is operational do

10 if k = |V | −m then
11 continue;
12 end
13 if the number of in-service flows exceeds α · F̂1 then
14 sort vNFs in descending order of their popularity;
15 S̃ = ∅;
16 for each vNF Vi ∈ {V1, · · · , VN} in sorted order do
17 if {S̃, Vi} can be deployed on a PDP switch then
18 insert Vi in S̃;
19 else
20 break;
21 end
22 end
23 merge vNFs in S̃ to get a superset stateful SFC;
24 select a PDP switch without SFC to deploy S̃;
25 k = k + 1;
26 if k = |V | −m then
27 continue;
28 end
29 end
30 if the number of in-service flows through the pipeline on v

exceeds β · F̂2 then
31 select a PDP switch without SFC to deploy the

superset SFC Sv on v;
32 k = k + 1;
33 end
34 end

Algorithm 2 shows our heuristic for dynamic stateful SFC
deployment. Line 1 is for the initialization, where k is the
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Fig. 7. Example on runtime stateful SFC deployment.

counter for the switches on which superset stateful SFCs have
been deployed, and m is the number of switches considered in
the initial SFC deployment (Lines 3-8). Here, we empirically
set m = d |V |2 e, and its value can be adjusted according to the
characteristics of actual NFV environments. Then, we merge
all the N types of vNFs supported in the st-SFC system to get
a superset stateful SFC Ŝ (Line 2). If Ŝ can be accommodated
in a PDP switch, we select m switches to deploy it on (Lines
3-4). Otherwise, we find m longest sequences of vNFs that
each can be accommodated in a PDP switch and in all cover
all the N types of vNFs, merge them to get m stateful SFCs,
and deploy the SFCs in m switches one by one (Lines 5-7).

Algorithm 3: Routing Strategy for New SFC Request

1 Ṽ = ∅;
2 for each switch v ∈ V do
3 if the requested SFC Sr ⊆ Sv then
4 add v to Ṽ ;
5 end
6 end
7 if Ṽ 6= ∅ then
8 for each switch v ∈ Ṽ do
9 wv = N + 1− len(Sv);

10 end
11 randomly select a switch v∗ ∈ Ṽ based on {wv, v ∈ Ṽ };
12 Ṽ = {v∗};
13 else
14 sort switches v ∈ V in descending order of the lengths of

superset stateful SFCs deployed on them;
15 for each switch v ∈ V in sorted order do
16 S′r = Sr;
17 for each vNF V r

i ∈ Sr in sequence do
18 if V r

i ∈ Sv then
19 S′r = S′r \ V r

i ;
20 add v to Ṽ if v is not already there;
21 else
22 break;
23 end
24 end
25 if S′r 6= ∅ then
26 Sr = S′r;
27 else
28 break;
29 end
30 end
31 end
32 set up paths to route the request’s traffic through switches in Ṽ ;

The while-loop of Lines 9-34 is for runtime operations.

First, if all the switches have been deployed with superset
SFCs, no operation will be conducted (Lines 10-12). Then, we
check whether the number of in-service flows in the network
exceeds the threshold α · F̂1, where α ∈ (0, 1) is a ratio and
F̂1 is the estimated maximum number of in-service flows that
can be provisioned in the network. If yes, we sort the vNFs
in descending order of their popularity, greedily merge the
most popular vNFs to get the longest superset SFC that can
be accommodated in a PDP switch, and deploy the SFC on a
switch that does not currently carry a superset SFC (Lines 13-
29). Next, we check whether the number of in-service flows
through each switch v exceeds the threshold β · F̂2, where
β ∈ (0, 1) is also a ratio and F̂2 is the estimated maximum
number of in-service flows that can be carried by the switch.
If yes, we select a PDP switch without any superset SFC and
duplicate the superset SFC on v onto it (Lines 30-33).

Algorithm 3 explains how to serve a SFC request Sr with
our st-SFC system in runtime. Line 1 initializes the set of
the switches to serve the request as V = ∅. Then, we check
each switch v in the network to see whether the superset SFC
deployed on it can cover the requested SFC Sr in whole, and
if yes, we add v in Ṽ (Lines 2-6). Next, if Ṽ is not empty,
we assign a weight wv to each switch in it according to the
length of the superset SFC on the switch, i.e., the weight wv

decreases with the length of Sr (Lines 7-10). Lines 11-12 then
select a switch v∗ from Ṽ to provision Sr, with the weighted
random selection (i.e., the probability that a switch v is chosen
is proportional to its weight wv). Otherwise, if no switch in
V has a superset SFC that can cover Sr in whole, we sort
all the switches in descending order of the lengths of superset
SFCs deployed on them (Line 14). Then, the for-loop of Lines
15-30 checks each switch v in the sorted order to see whether
vNF(s) in Sr can be served in sequence with the superset SFC
on the switch, and if yes, we add v in Ṽ . Finally, Line 32 sets
up the paths to route the traffic of Sr through the switches in
Ṽ , and accomplishes the provisioning of the SFC request.

V. PERFORMANCE EVALUATIONS

In this section, we discuss the implementation of prototype
st-SFC and performance evaluations with experiments.

A. Implementation and Experimental Setup

We prototype st-SFC with the P4-based PDP switches
that equip Tofino ASICs. On each PDP switch, we program
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(a) 5 vNFs in stateful SFC (b) 7 vNFs in stateful SFC (c) 9 vNFs in stateful SFC

Fig. 8. Results on SRAM usage due to stateful SFC deployment.

(a) 5 vNFs in stateful SFC (b) 7 vNFs in stateful SFC (c) 9 vNFs in stateful SFC

Fig. 9. Results on stage usage due to stateful SFC deployment.

TABLE I
INFORMATION ABOUT VNFS SUPPORTED IN OUR ST-SFC PROTOTYPE

Stateful vNFs Category Pipeline Stages
Stateful load balancer 3 4

Stateful NAT 3 4
Fast re-routing 3 5
TCP firewall 2 7
Heavy hitter 1 4

DNS reflection attack protection 3 5
SYN flood detection 1 6

DNS request detection 1 6
Super spread detection 1 6

Flow size detection 1 3

a unified Python-based Barefoot Runtime control plane to
manage the switch’s pipeline that is programmed with the
P4 language. We develop the st-SFC prototype to support
N = 10 types of stateful vNFs, which are all typical ones in
the literature. Table I shows the stateful vNFs, their categories
according to the classification method discussed in Section
III-B, and the number of stages that they will occupy in a
switch pipeline. In addition to the PDP switches, we also
implement a home-made global controller based on Python for
network-wide management (as shown in Fig. 6), i.e., running
Algorithms 2 and 3 to deploy stateful superset SFCs on PDP
switches and provision SFC requests with them in runtime.

In the experiments, we evaluate our st-SFC system to 1)
verify its advantages in saving hardware resources and reduc-
ing average E2E latency of stateful SFCs, and 2) demonstrate
the functionality and performance of stateful SFC deployment
with it. We deploy the global controller on an Ubuntu 20.04
Linux server with 40 Intel Xeon Silver 4210 CPUs and 64

GB of memory. The network testbed includes 4 PDP switches,
which are all connected to the ingress switch with the topology
in Fig. 6. We set α = 0.6 and β = 0.9 in the experiments.

B. Performance of Static Stateful SFC Deployment

We first evaluate the performance of st-SFC for static
stateful SFC deployment (i.e., the one-time initial deployment
of stateful SFCs). We also implement a benchmark that only
considers the exact merge (e.g., the vNF merging approach
used in [35, 36]) and does not leverage the PktIn-Table to
optimize the interactions with the control plane. We first
randomly select {5, 7, 9} vNFs from the 10 supported ones
to form a stateful SFC and deploy the SFC in PDP switches.
The tool of Intel P4 Insight [45] is used to get the usages of
SRAM units and stages3 in PDP switches.

Figs. 8 and 9 respectively show the total numbers of
SRAM units and stages used in each experiment to support
[10000, 200000] client flows. Here, in each experiment, we
first determine the size of each MAT (in table entries) and
number of registers based on the number of flows to support,
and then write the P4 program for a specific SFC accordingly.
Next, we process the P4 program with our st-SFC and the
benchmark for table merging, send their outputs to P4 com-
piler, and get the resource usages with P4 Insight. We can
see that st-SFC uses fewer SRAM units and stages than the
benchmark, and the resource saving achieved by it increases
with the length of a stateful SFC and the number of flows to
serve. For example, for the cases with the SFC that consists
of 7 vNFs, the SRAM saving achieved by st-SFC over the

3A P4 program for stateful SFC can use 12 stages at most in the pipeline
of a PDP switch, and the maximum number of SRAM units in a stage is 80.
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TABLE II
COMPARISON OF USAGES OF DIFFERENT TYPES OF HARDWARE RESOURCES IN PDP SWITCH

Type of Hardware Resource 5 vNFs 7 vNFs 9 vNFs
st-SFC benchmark st-SFC benchmark st-SFC benchmark

SRAM Units 267 351 333 470 392 555
Exact Match Input Xbar 109 137 132 166 156 194

Gateway 12 12 12 12 13 13
Hash Bit 460 669 564 819 750 1,007

TCAM Units 17 17 17 17 17 17
Stash 9 20 11 25 14 30

Logical Table ID 25 27 31 33 36 38
Stages 10 11 12 13 14 15

Number of PDP switches 1 1 1 2 2 2

benchmark increases from 21.6% to 34.6% when the number
of flows changes from 10, 000 to 200, 000. This is because
compared with the benchmark, st-SFC facilitates two more
merging strategies (i.e., same action merge and same match
merge) to further save SRAM units and stages, and as the
resource saving achieved by them is effective for each vNF
and each flow, st-SFC saves more resources when the length
of a stateful SFC and the number of flows to serve increase.

As for stage usage, Fig. 9 indicates that with a single PDP
switch, st-SFC can provision 100, 000 flows in the SFC with
7 vNFs or 50, 000 flows in the SFC with 9 vNFs (i.e., the
number of used stages is 12 or less). However, the benchmark
can only serve 50, 000 flows for the SFC with 7 vNFs, and it
cannot even deploy the SFC with 9 vNFs in one PDP switch.
This is because the usage of stages depends on the sizes and
dependencies of MATs (e.g., if there are dependencies between
two MATs, they can only be placed in two stages), which can
both be effectively reduced by the table merging in st-SFC.

In addition to SRAM and stages, there are other types
of hardware resources in the pipeline of a PDP switch. For
instance, there are also TCAM units, the Exact Match Input
Xbars that are used to select data from packet header vectors
for field match and hash computation, the Gateways that are
for implementing “if” conditional statements, the Hash Bits
that are the generators for hash operations, Stashes that provide
temporary storage for realizing table entry modifications, and
the Logical Table IDs that are used to serialize the processing
in MATs. Therefore, for a more comprehensive comparison,
Table II lists the usages of various types of resources when
there are 100, 000 flows to serve with three types of stateful
SFCs. It can be seen that st-SFC saves most types of hardware
resource. As the merging strategies of st-SFC cannot reduce
conditional statements in a stateful SFC, the Gateway usages
of st-SFC and the benchmark are the same. Meanwhile, the
table merging considered in this work does not affect TCAM,
and thus the TCAM usages in Table II stay unchanged.

Next, we test the throughput and processing latency of
a deployed stateful SFC with 7 vNFs, where the number
of flows is set as 50, 000, because according to the results
in Fig. 9(b), this scenario is the largest scale that can be
handled by the benchmark with one PDP switch. This time,
we introduce another benchmark, namely, simple forwarding,
which only lets each stage match to the destination IP address,
and the number of stages is made the same as that of st-

(a) Processing latency (b) Processing latency

(c) Processing latency (d) Throughput

Fig. 10. Results on processing latency and throughput of stateful SFCs.

SFC. Simple forwarding is introduced to check whether the
stateful SFCs deployed by st-SFC will cause abnormally long
processing latency, when being compared to the simplest
packet forwarding scheme in a PDP switch. Figs. 10(a)-10(c)
shows that the processing latency of SFC deployed by st-
SFC is only slightly longer than that of SFC deployed by the
benchmark when the packet size is less than 512 bytes, while
their latencies are almost the same at larger packet sizes (i.e.,
{512, 1024} bytes). This is due to the unavoidable increase of
logic unit complexity caused by the vNF merging in st-SFC.

As expected, simple forwarding achieves shorter processing
latency than st-SFC and the benchmark when the packet size
is less than 512 bytes. Note that, packet receiving, parsing and
processing all contribute to the processing latency of a packet.
For a smaller packet size, the pipeline needs to process more
packets at the same data-rate, and thus the complex processing
logic provided by st-SFC can become the bottleneck to cause
longer processing latencies than those from simple forwarding
for small-sized packets. On the other hand, for a relatively
long packet, receiving and parsing it can be time-consuming
and contribute to the majority of its processing latency, which
explains why the processing latencies of the three schemes are
similar at packet sizes of {512, 1024} bytes.

As the benchmark cannot deploy an SFC with 9 vNFs in
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one PDP switch, Fig. 10(c) only shows the results of st-SFC
and simple forwarding, where the gaps between their latencies
are similar as those in Figs. 10(a) and 10(b), verifying that st-
SFC scales well. Specifically, as the packet size increases, the
processing latency of the SFC deployed by st-SFC increases
from 451 ns to 961 ns, while that of simple forwarding
increases from 304 ns to 960 ns. The packet processing
performance of the stateful SFC deployed by st-SFC can be
further confirmed with the throughput results in Fig. 10(d), as
the line-rate of 10 Gbps can be achieved for all the packet
sizes. Note that, the experiments use 10 Gbps as the line-
rate for the reason that this is the highest data-rate that we
can achieve for all the packet sizes with our software packet
generator based on data plane development kit (DPDK) [46].

Fig. 11. New flow processing capacity for verifying benefit of PktIn-Table.

Finally, we conduct experiments to verify the effectiveness
of PktIn-Table. We still consider the case of SFC with 7
vNFs, and select two of the vNFs as TCP firewall and DNS
reflection attack protection, which belong to the second and
third category in Section III-B, respectively, and both need
to interact with the control plane for state updates. The
experiments generate new flows with a speed of [200, 1000]
flows per second, and check the capacity of the stateful
SFC when interactions with the control plane have to be
invoked. As shown in Fig. 11, the stateful SFC deployed by
st-SFC can catch up with the arrival rate of new flows until
there are more than 700 flows being generated per second,
while the one deployed by the benchmark cannot process
all the new flows when the arrival rate is higher than 300
new flows per second. This is because without PktIn-Table,
the benchmark always uploads the state information of TCP
firewall and DNS reflection attack protection together, bringing
unnecessary message parsing overheads to the control plane.
Therefore, by adopting PktIn-Table, st-SFC more than doubles
the capacity of the SFC on processing new flows, making
interactions with the control plane much more efficient.

C. Performance of Dynamic Stateful SFC Deployment

Next, we evaluate our proposed algorithms for dynamic
stateful SFC deployment (i.e., Algorithms 2 and 3). This
time, in order to focus on the performance of the algorithms,
we make the benchmark also use the mechanism of st-SFC
to merge vNFs to superset SFCs and deploy them on PDP
switches. The main difference between it and st-SFC is that it
only uses the Lines 2-8 in Algorithm 2 to find the longest
possible superset SFC(s) and deploy them on all the PDP

Fig. 12. Results on provisioned SFC requests in dynamic SFC deployment.

(a) Total latency (b) Algorithm running time

Fig. 13. Results on latency of runtime SFC request provisioning.

switches in the initial deployment but does not consider the
Lines 9-34 in the algorithm for adaptive and dynamic superset
stateful SFC deployment. Meanwhile, the benchmark also uses
Algorithm 3) to provision SFC requests in runtime.

The experiments randomly select [5, 10] vNFs from the 10
supported types to generate SFC requests dynamically. Fig. 12
shows the results on the number of SFC requests that can be
successfully provisioned in networks with different sizes. Note
that, due to our limited budget, only the results for the network
with 4 PDP switches are experimental, while the remaining
ones are obtained with the simulations based on exactly same
resource constraints for PDP switches. Specifically, each sim-
ulation considers a network that contains [5, 25] PDP switches,
generates SFC requests dynamically in the same way used by
the experiments, still uses st-SFC and the benchmark to deploy
stateful SFCs in the network, and finally obtains the number of
SFC requests that can be provisioned in each case. We observe
that related to the benchmark, st-SFC can increase the number
of provisioned flows by [11%, 19%] with an average ratio of
14.2%, which verifies the effectiveness of Algorithm 2. This is
because Algorithm 2 properly considers the popularity of vNFs
to compose and deploy superset stateful SFCs incrementally in
runtime, and thus can satisfy the SFC requests of more flows.

Finally, we measure the latency of SFC request provisioning
in runtime. Specifically, the latency is the time period from
when a new request arrives at the global controller to when
the request SFC becomes operational in the network. Fig. 13(a)
shows the experimental results on the average latency, which
indicates that when the number of vNFs in a request SFC
increases from 5 to 10, the latency changes from 11.7 ms
to 16.2 ms. We plot the running time of the algorithms in
Fig. 13(b), which is within [0.33, 0.46] ms. This suggests that
our proposed algorithms are time-efficient and their running
time does not make major contribution to the latency. The
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(a) New flow processing capability (b) Latency of composing an SFC

Fig. 14. Performance of st-SFC on single- and dual-pipeline Tofino switches.

major part of the latency comes from the interaction between
the local control plane and data plane of a PDP switch, for
updating table entries for deploying SFC requests.

D. Evaluation of st-SFC in Dual-Pipeline Scenario
Finally, we implement and evaluate st-SFC in a Tofino

switch that can support two pipelines simultaneously, i.e., the
switch can carry two superset SFCs to process packets in
parallel. When the two pipelines are processing stateful vNFs,
there will be more interactions with the control plane, which
affects the speed of state information update in each pipeline
[47]. Fig. 14(a) shows the capabilities of a Tofino switch in
single-pipeline and dual-pipeline scenarios on processing new
flows for superset SFC(s) deployed with st-SFC. It can be
seen that when both pipelines in the switch are activated, the
capability of each pipeline on processing new flows is less than
400 flows/sec, which is less than that in the single-pipeline
scenario (∼700 flows/sec). We plot the latency of composing
an SFC with the deployed superset SFC(s) (i.e., the time used
for installing related flow entries in runtime) in Fig. 14(b). We
observe that the latency of the dual-pipeline scenario is about
[5.8, 7] ms longer than that of the single-pipeline scenario.
Fig. 14 suggests that there is a tradeoff between the number
of superset SFCs to deploy in a Tofino switch and the state
information update speed of each of them.

VI. CONCLUSION

In this paper, we proposed st-SFC, which is an NFV system
that can deploy stateful SFCs in P4-based PDP switches to not
only utilize the hardware resources on switches efficiently but
also minimize the overhead of interactions between control
and data planes. We first abstracted each stateful vNF as a
state machine. Then, we proposed a stateful SFC building
algorithm to merge the state machines of vNFs of different
types for reducing redundant resource usages in PDP switches.
Meanwhile, for the vNFs whose operations involve interac-
tions with the control plane, we designed a PktIn-Table to
reduce the resource usage in PDP switches and the interaction
latency. Next, we developed an SFC deployment algorithm that
realizes stateful SFCs on PDP switches on demand, aiming
to optimize the resource usages across all the switches in
runtime. Finally, we prototyped st-SFC with P4-based PDP
switches and demonstrated its performance experimentally.
Our experimental results verified that st-SFC can provision
dynamic SFC requests with high resource-efficiency, and out-
perform benchmarks in terms of hardware resource utilization
and interaction delay between the control and data planes.
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