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Abstract—The rapid development of network function virtu-
alization (NFV) has notably increased the implementation of
virtual network functions (vNFs), especially the stateful ones, on
high-performance programmable data plane (PDP) switches (e.g.,
those based on P4 and Tofino ASICs). This facilitates offloading
stateful service function chains (SFCs) to PDP switches. However,
the capability of PDP switches to carry stateful SFCs is still
constrained by their limited hardware resources. In this work,
we propose to address this issue with adaptive table merging,
formulate an integer linear programming (ILP) model to optimize
the deployment of stateful SFCs on P4-based PDP switches with
table merging, and design a time-efficient heuristic to solve the
problem quickly. Simulation results validate that our proposals
successfully enhance the deployment efficiency of stateful SFCs,
outperforming existing benchmarks significantly.

Index Terms—Network function virtualization, Service Func-
tion Chaining, Programmable data plane, P4, Table merging.

I. INTRODUCTION

Propelled by the synergistic fusion of network function
virtualization (NFV) and software defined networking (SDN)
[1, 2], service function chaining (SFC) [3] has advanced the
state-of-the-art of service provisioning in the Internet strongly.
NFV decomposes network services into the virtual network
functions (vNFs) that can be instantiated on general-purpose
software and hardware platforms to enhance cost-efficiency
and flexibility, while SDN separates the control and data planes
of a network to bring in unprecedented programmability. Their
confluence facilitates the agile service provisioning with SFC
(i.e., steering application traffic through a series of vNFs),
successfully mitigating the high cost and long lead time of
service provisioning with special-purpose middle-boxes [3–5].

Meanwhile, the advent of programmable data plane (PDP)
[6] has catalyzed a paradigm shift of SFC deployment, posi-
tioning vNFs for being deployed across software and hardware
platforms to explore their advantages simultaneously [7]. In
addition to the protocol-agnostic programmability enabled by
P4 [6], PDP switches can realize customized packet processing
at a line-rate of 100 Gbps and beyond. Such attributes have
seen P4-based PDP switches being increasingly leveraged to
support the offloading of various vNFs, showcasing superior
performance on packet handling throughput and latency [8, 9].
Despite the advantages, offloading SFCs to PDP switches still
faces a few challenges. For instance, when realizing an SFC on
one PDP switch, the vNFs are instantiated as packet processing
pipelines, each of which is formed in stages with static random
access memory (SRAM), ternary content addressable memory

(TCAM), arithmetic and logic units (ALUs), and registers.
However, as the SRAM and TCAM in each stage are limited,
the number of flow entries that can be accommodated in a
vNF is much smaller than that of running the vNF on a server
[10]. This necessitates optimizing memory allocation of SFCs
deployed on PDP switches, especially for stateful SFCs [9].

Although people have considered how to optimize memory
allocation in PDP switches to deploy stateless SFCs [11, 12],
they treated each vNF as an atomic unit, leading to resource-
inefficient solutions because different vNFs can contain similar
logic units. To address this issue, researchers have delved into
consolidating stateless vNFs to mitigate redundant resource
usage [13, 14]. However, these studies overlooked the stateful
SFCs that retain state information on PDP switches through
P4 primitives and registers and thus can effectively reduce the
interactions with the control plane during operation [15, 16].
Note that, due to the intrinsic differences between stateless and
stateful SFCs, the vNF consolidation approach developed for
stateless SFCs can hardly be applied to stateful ones, so does
the optimization scheme for SFC deployment on account of
vNF consolidation. More recently, pSFC [17] was proposed
to compose multiple stateless/stateful SFCs to a compound
control flow graph for eliminating redundant logic units among
the SFCs, but it only tried to merge the same tables in vNFs.
Hence, we can still improve it, considering the possibility of
merging tables of different types in stateful vNFs.

In this work, we first explain why stateful vNFs in various
types can be consolidated based on logic unit combinations
[18]. Then, with the table merging method that is applicable
to different vNFs, we study how to optimize the deployment
of a set of stateful SFCs on PDP switches, to minimize the
total resource usage and average path length of the SFCs. An
integer linear programming (ILP) model is formulated, and
we also propose a time-efficient heuristic for the optimization.
Extensive simulations verify the effectiveness of our proposals.

The rest of the paper is organized as follows. We describe
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Fig. 1. Modeling a stateful vNF as a state machine.



how to decompose stateful vNFs into fine-grained logic units
to enable subsequent table merging in Section II. Section III
formulates an ILP model to optimize the SFC deployment
on account of the table merging method. The time-efficient
heuristic for deploying stateful SFCs across PDP switches
is proposed in Section IV. In Section V, we discuss the
simulation results. Finally, Section VI summarizes the paper.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

To deploy SFCs including stateful vNFs on PDP switches
with high resource-efficiency, we can first model each stateful
vNF as one state machine built with a state transition module
(STM) and an action module (AM), as illustrated in Fig. 1.
Specifically, the STM maintains the state information of the
vNF (e.g., state per packet, per flow, or about link(s)) based on
the events that are internal or external to a PDP switch, while
the AM performs the match-action operation defined by the
current state. Then, the STM and AM can be implemented in
the pipeline of a PDP switch with match action tables (MATs)
and register actions. Hence, table merging can be applied to
different vNFs after decomposing each of them into two logic
units (STM and AM), to reduce redundant resource usage.

Specifically, in addition to the Exact Merge (i.e., merging
two exactly same logic units in two vNFs) considered in
[17], we can introduce two new principles for table merging:
1) the Action Merge that merges two logic units only with
the same actions, and 2) the Match Merge that merges two
logic units only with the same match items. Fig. 2 provides
examples on Action Merge and Match Merge, where the states
of stateful vNFs are denoted as bitmaps with significant bits in
the states marked in red. For example, the states in MAT a are
{001, 000}, where the lowest bit is significant. It can be seen
that MATs a and b use the same actions but their match items
are different. Hence, we can apply Action Merge to merge their
state bitmaps to 011 = 001+010, as shown in the bottom part
of Fig. 2, which will reduce the SRAM demand of MATs a
and b from 8 bytes to 4 bytes. Similarly, by applying Match
Merge to MATs c and d, which use identical match items, the
SRAM usage of the two MATs is cut from 8 bytes to 5 bytes.
Note that, reducing the SRAM and TCAM usages of a vNF
will make more of its entries be accommodated in each stage
of a PDP switch’s pipeline (it may only have 12 stages).

Then, to optimize the SFC deployment on account of the
aforementioned table merging method, we model the network
topology of the substrate network (SNT) as G(V,E), where V
and E are the sets of PDP switches and links between them,
respectively. For each PDP switch v ∈ V , we define its SRAM
and TCAM capacities as CSRAM and CTCAM. The bandwidth
capacity of each link e ∈ E is CBW. The set of pending SFCs
is S = {S1, · · · , SN}, where the i-th SFC (i ∈ [1, N ]) is
denoted as Si(si, di, Ri, bi, fi). Here, si and di are the SFC’s
source and destination nodes, respectively, Ri = {r1, · · · , rn}
is its vNF sequence, bi is its total bandwidth demand, and fi
denotes the number of flows that are anticipated to use the
SFC. In Ri, each vNF is denoted as rj (j ∈ [1, n]) and can be
decomposed into mj logic units, i.e., rj = {lj,1, · · · , lj,mj

}.

Fig. 2. Examples on table merging principles.

Here, each logic unit lj,k (k ∈ [1,mj ]) can be an MAT, a
register action, an independent action, or a conditional branch.

III. ILP FORMULATION

In addition to those defined in the previous section, our ILP
model also uses the following parameters.
• M: the set of match item types considered for MATs.
• A: the set of action types considered for MATs.
• cSRAM

m /cTCAM
m , cSRAM

a /cTCAM
a : the SRAM/TCAM usages of

match items in type m and actions in type a, respectively.
• gi,j,km,a : the boolean indicator that equals 1 if the k-th logic

unit in the j-th vNF of SFC Si is an MAT (m, a) (i.e.,
the types of match items and actions of the MAT is in
types m ∈M and a ∈ A, respectively), and 0 otherwise.

• spv1,v2 : the smallest hop-count of paths between nodes
v1 and v2 (v1, v2 ∈ V ).

• Di,j
k1,k2

: the boolean indicator that equals 1 if in the j-th
vNF of SFC Si, the k2-th logic unit’s execution depends
on the k1-th logic unit, and 0 otherwise.

• M : a large positive integer.
Decision Variables:
• xv,si,j,k: the boolean variable that equals 1 if the k-th logic

unit in the j-th vNF of SFC Si is deployed on the s-th
stage of PDP switch v ∈ V , and 0 otherwise.

• xv,ini,j,k: the integer variable for the start-stage on v where
the k-th logic unit in the j-th vNF of SFC Si is deployed.

• xv,out
i,j,k : the integer variable for the end-stage on v where

the k-th logic unit in the j-th vNF of SFC Si is deployed.
• xv,range

i,j,k : the boolean variable that equals 1 if the k-th logic
unit in the j-th vNF of SFC Si is on v, and 0 otherwise.

• zei : the boolean variable that equals 1 if SFC Si passes
through link e ∈ E, and 0 otherwise.

• yv,sm,a: the boolean variable that equals 1 if an MAT (m, a)
is deployed on the s-th stage of switch v, and 0 otherwise.

• yv,s: the boolean variable that equals 1 if s-th stage of
switch v is used, and 0 otherwise.

• ξv,sm,a: the integer variable that indicates how many SFCs
use an MAT (m, a) deployed on the s-th stage of v (i.e.,
these SFCs use Exact Merge for their MATs in (m, a)).



• ζv,sm,a/ηv,sm,a/θv,sm,a/δv,sm,a: the boolean variable that equals 1
if an MAT (m, a) is deployed on the s-th stage of v and
Exact Merge/Match Merge/Action Merge/no merge has
been applied to the MAT, and 0 otherwise.

• βv,s
m,a1,a2

: the boolean variable that equals 1 if MATs
(m, a1) and (m, a2) are deployed on the s-th stage of
PDP switch v, and 0 otherwise.

• γv,sm1,m2,a: the boolean variable that equals 1 if MATs
(m1, a) and (m2, a) are deployed on the s-th stage of
PDP switch v, and 0 otherwise.

• χv,s,1
i,m,a-χv,s,4

i,m,a: the integer variable that indicates the num-
ber of flows, which belong to SFC Si and will use MAT
(m, a) with Exact Merge/Match Merge/Action Merge/no
merge deployed on the s-th stage of PDP switch v.

• χv,s
i,m: the integer variable that indicates the number of

flows, which belong to SFC Si and will use match item
m with Match Merge deployed on the s-th stage of v.

• χv,s
i,a : the integer variable that indicates the number of

flows, which belong to SFC Si and will use action a
with Action Merge deployed on the s-th stage of v.

• xvi,j : the boolean variable that equals 1 if the j-th vNF of
SFC Si is deployed on PDP switch v, and 0 otherwise.

The optimization of SFC deployment should consider both
the stage usages on PDP switches and hop-counts of SFCs.

S =
∑
v,s

yv,s,

L =
∑

v1,v2,i,j1,j2

xv1i,j1 · x
v2
i,j2
· spv1,v2 ,

(1)

where S is the total number of used stages, and L is the total
hop-count of the SFCs’ paths1. L impacts the overall latency
of SFCs, while S is proportional to the total resource usage
in PDP switches. The objective is defined as

Minimize α · S + (1− α) · L, (2)

where α is the weight parameter to balance the two terms.
Constraints:
1) Constraints on deploying logic units:

∑
s

xv,si,j,k =
(
xv,out
i,j,k − x

v,in
i,j,k + 1

)
· xv,range

i,j,k ,

xv,out
i,j,k − x

v,in
i,j,k ≥ 0,

xv,ini,j,k ≥M · x
v,range
i,j,k ,

xv,out
i,j,k ≥M · x

v,range
i,j,k ,

∀v, i, j, k. (3)

Eq. (3) ensures that the variables about deployment of logic
units ({xv,si,j,k}, {x

v,in
i,j,k}, {x

v,out
i,j,k}, {x

v,range
i,j,k }) are correctly set.

2) Constraints on table merging:

ξv,sm,a =
∑
i,j,k

xv,si,j,k · g
i,j,k
m,a ,

ζv,sm,a ≤
1

2
· ξv,sm,a,

ζv,sm,a ≥
1

M
· (ξv,sm,a − 1),

∀v, s,m, a. (4)

1As Eq. (1) is nonlinear because it contains multiplying of variables, we
linearize it when solving the ILP. The linearization is omitted to save space.

Eq. (4) ensures that the MATs, which use Exact Merge, are
correctly determined.

βv,s
m,a1,a2

≤
∑
i,j,k

xv,si,j,k · g
i,j,k
m,a1

,

βv,s
m,a1,a2

≤
∑
i,j,k

xv,si,j,k · g
i,j,k
m,a2

,

βv,s
m,a1,a2

≥ yv,sm,a1
+ yv,sm,a2

− 1,

ηv,sm,a1
≥ βv,s

m,a1,a2
,

∀v, s,m, a1, a2. (5)

ηv,sm,a1
≤
∑
a2

βv,s
m,a1,a2

, ∀v, s,m, a1. (6)

Eqs. (5) and (6) ensure that the MATs, which use Match
Merge, are correctly determined.

γv,s
m1,m2,a ≤

∑
i,j,k

xv,si,j,k · g
i,j,k
m1,a,

γv,s
m1,m2,a ≤

∑
i,j,l

xv,si,j,k · g
i,j,k
m2,a,

γv,s
m1,m2,a ≥ y

v,s
m1,a + yv,sm2,a − 1,

θv,sm1,a ≥ γ
v,s
m1,m2,a,

∀v, s,m1,m2, a. (7)

θv,sm1,a ≤
∑
m2

γv,s
m1,m2,a, ∀v, s,m, a1. (8)

Eqs. (7) and (8) ensure that the MATs, which use Action
Merge, are correctly determined.

yv,sm,a ≥ xv,si,j,k · g
i,j,k
m,a , ∀v, s,m, a, i, j, k, (9)

∑
i,j,k

xv,si,j,k · g
i,j,k
m,a ≤ yv,sm,a ·

∑
i,j,k

gi,j,km,a ,

∑
i,j,k

xv,si,j,k · g
i,j,k
m,a ≥ (yv,sm,a − 1) ·

1 +
∑
i,j,k

gi,j,km,a

 ,

∀v, s,m, a.

(10)
Eqs. (9) and (10) ensure that the relation between variables
for logic unit deployment ({xv,si,j,k}) and those for MAT
deployment ({yv,sm,s}) are correctly set.

yv,sm,a = ηv,sm,a + ζv,sm,a + θv,sm,a + δv,sm,a, ∀v, s,m, a. (11)

Eq. (11) ensures that each MAT uses one and only one table
merging principle (including no table merging).

3) Constraints on SFC deployment:

χv,s,l
i,m,a ≤ fi · ζ

v,s
m,a, ∀v, s, i,m, a, l ∈ [1, 4]. (12)

∑
j,k

xv,si,j,k · g
i,j,k
m,a ≤

4∑
l=1

χv,s,l
i,m,a, ∀v, s,m, a, (13)

{
χv,s,2
i,m,a = χv,s

i,m,

χv,s,3
i,m,a = χv,s

i,a ,
∀v, s, i,m, a. (14)

Eqs. (12)-(14) ensure that for an MAT of SFC Si, no matter
which table merging principle is used on it, the number of
flows that belong to Si and use it does not exceed fi.∑

i,m

(∑
a

ηv,sm,a + cSRAM
m

)
·
∑
i

χv,s
i,m +

∑
a

∑
i

χv,s
i,a · c

SRAM
a

+
∑

i,v,s,m,a

χv,s,4
i,m,a · (c

SRAM
m + cSRAM

a ) ≤ CSRAM,

∀v, s.

(15)



∑
i,m,a

χv,s,4
i,m,a ·

(
cTCAM
m + cTCAM

a

)
≤ CTCAM, ∀v, s. (16)

Eqs. (15) and (16) ensure that the stages on each node v do not
consume more SRAM/TCAM than the corresponding capacity.∑

i

zei · bi ≤ CBW, ∀e. (17)

Eq. (17) ensures that the total bandwidth usage of SFCs on
each link does not exceed its bandwidth capacity.

xv,out
i,j,k1

≤ xv,ini,j,k2
−Di,j

k1,k2
·
(
x
v,range
i,j,k1

+ x
v,range
i,j,k2

− 1
)
, ∀v, i, j, k1, k2.

(18)
Eq. (18) ensures that the relations between logic units of each
SFC are correctly set.

yv,s > yy,sm,a,

yv,s 6
∑
m,a

yy,sm,a, ∀v, s,m, a. (19)

Eq. (19) ensures that each vNF is placed correctly on a stage.

xvi,j 6
∑
k

x
v,range
i,j,k ∀v, i, j. (20)

xv,si,j,k 6 xvi,j , ∀v, s, i, j, k. (21)

Eqs. (20) and (21) ensure that the values of variables related
to vNF deployment are set correctly.

In the ILP above, Eqs. (3) and (15) nonlinear. We omit their
linearization procedures to save space.

IV. HEURISTIC ALGORITHM

To accelerate problem-solving, we, in this section, propose
a polynomial-time heuristic to solve the optimization above.
It has three sub-procedures, i.e., coarse-grained SFC merging,
fine-grained table merging, and deployment of SFC superset.

Algorithm 1 shows the proposed sub-procedure for coarse-
grained SFC merging, which tries to combine all the SFCs
in S to formed an SFC superset S′ that records all the vNFs
in the SFCs in the right order. This will promote the reusing
of vNFs among SFCs, benefiting the subsequent step of fine-
grained table merging. Line 1 initializes La, which will store
vNFs and their feasible locations in the SFC superset S′. Then,
we initialize S′ as the longest SFC in S (Line 2). Next, the
for-loop of Lines 3-27 checks all the remaining SFCs in S
to update La accordingly. Specifically, Lines 4-12 check each
vNF rj in an SFC Si to record its index in S′ in Pi, and
mark the index of rj as −1 if it cannot be found in S′. Then,
Line 13 finds the longest sequence of increasing indices P̂ in
Pi, and the vNFs in Si with these indices can be considered
as included in S′ already. Next, Lines 14-26 check each vNF
whose index is not included in P̂ , and insert it and its feasible
location in S′, which will not make Si out of order, in La.
Finally, we check each vNF in La to insert it in the SFC
superset S′ according to the feasible location recorded in La.

Algorithm 2 explains the fine-grained table merging based
on the output of Algorithm 1. Line 1 is for the initialization,
where R and M are for the processed vNFs in S′ and
applicable table merging schemes, respectively, and S′′ is for

Algorithm 1: Coarse-grained SFC Merging
Input: Set of pending SFCs S = {S1, · · · , SN}.

1 La = ∅;
2 find the longest SFC in S whose stateful vNFs are shared the

most by other SFCs, and mark it as S′;
3 for each SFC Si ∈ S \ S′ do
4 Pi = ∅;
5 for each vNF rj ∈ Si do
6 if rj ∈ S′ then
7 record the index of rj in S′ as pj ;
8 else
9 pj = −1;

10 end
11 insert pj in Pi;
12 end
13 apply dynamic programming to find the longest sequence

of increasing indices P̂ in Pi;
14 record the set of vNFs whose indices are not in P̂ in Li;
15 if Li 6= ∅ then
16 for each vNF rj ∈ Li do
17 if rj ∈ La then
18 check La to see whether feasible location(s)

of rj in S′ satisfies the requirement of Si;
19 if the requirement cannot be satisfied then
20 insert rj and its feasible location in S′,

which satisfies requirement of Si, in La;
21 end
22 else
23 insert rj and its feasible location in S′, which

satisfies requirement of Si, in La;
24 end
25 end
26 end
27 end
28 for each vNF rj ∈ La do
29 insert rj in S′ according to its feasible location in La;
30 end
31 return S′;

the SFC superset after table merging. The for-loop of Lines 2-
15 processes each vNF rj ∈ S′ to find a feasible table merging
scheme for its logic units. Here, we first check whether rj has
been processed, and if not, we put it in R (Lines 3-6). Next,
we check each vNF rk in S′ after rj to see whether Exact
Merge, Action Merge or Match Merge can be applied to the
logic units in rj and rk (Lines 7-14). If yes, we store the table
merging scheme in M and mark rk as processed (Lines 8-
10). Otherwise, we break the for-loop because only adjacent
vNFs can use table merging (Lines 11-12). Finally, Lines 16-
18 apply the table merging schemes in M to get S′′.

Algorithm 3 is for the deployment of merged SFC superset
S′′. Line 1 initializes Vd and P for the selected nodes for
SFC deployment and the shortest paths between each node
pair in V , respectively. We then calculate the smallest number
of adjacent PDP switches (m) that are in a line and can
accommodate the merged superset SFC S′′ (Line 2). Line 3
finds the shortest path between each node pair in V , and Line
4 finds the node v that has the largest intersection count with
the shortest paths of all the SFCs in S and puts it as the first
node in the selected node set Vd. Next, we find m adjacent
nodes from v in a line to put in Vd (Lines 5-8). We treat the



Algorithm 2: Fine-grained Table Merging
Input: Merged SFC superset S′.

1 R = ∅, M = ∅, S′′ = S′;
2 for each vNF rj ∈ S′ do
3 if rj ∈ R then
4 continue;
5 end
6 insert rj in R;
7 for each vNF rk in S′ from rj+1 do
8 if table merging can be applied to rj and rk then
9 append table merging scheme in M;

10 insert rk in R;
11 else
12 break;
13 end
14 end
15 end
16 for each table merging scheme in M do
17 merge related logic units and update S′′ accordingly;
18 end
19 return S′′;

PDP switches in Vd as a big switch [17], deploy the logic units
in S′′ on the big switch in the greedy manner, and compute
the total hop-count of all the SFCs in S as hm (Line 9). Then,
the for-loop of Lines 10-20 tries to optimize Vd in iterations,
hoping to further reduce hm. Specifically, in each iteration, we
try to replace a node in Vd and update the subsequent nodes
accordingly, to reduce hm (Lines 11-19).

The time complexity of Algorithm 1 is O(N · |S′|2 + |La|),
that of Algorithm 2 is O(|S′|2 + |M|), and Algorithm 3 runs
in O(|S′′|+ |V |2 · log2 |V |+ |V | · |E|+N +m+M · |Vd|).

V. PERFORMANCE EVALUATION

A. Simulation Setup

The simulations consider two topologies for the SNT, i.e.,
the 6-node topology and 24-node US Backbone (USB) topolo-
gy as depicted in Figs. 3(a) and 3(b), respectively. The capacity
of each link in the topologies is assumed to be 40 Gbps,
and each PDP switch can provide 12 stages to carry vNFs.
In order to make the simulations practical, we consider 10
different types of stateful vNFs in each simulation, which are
the stateful load balancer, stateful NAT, TCP firewall, heavy
hitter detection, DNS reflection attack mitigator, SYN flood
detection, DNS request analysis, super spreader identification,
and flow size monitor. Given the computational complexity
of the ILP, its application is confined to small-scale scenarios,
e.g., those in the 6-node topology. In the following discussions,
we refer to the three-step heuristic designed in Section IV
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Fig. 3. Topologies used in simulations.

Algorithm 3: Deployment of SFC Superset
Input: G(V,E), S = {S1, · · · , SN}, S′′, CSRAM, CTCAM, CBW,

the stages capacity s, and upper-limit of iterations M .
Output: Nodes with SFC deployment Vd, total hop-count hm.

1 Vd = ∅, P = ∅;
2 calculate the smallest number of PDP switches m needed to

deploy S′′ based on CSRAM, CTCAM, CBW, s and S;
3 find the shortest path between each node pair in V to put in P ;
4 find node v that has the largest intersection count with the

shortest paths of all SFCs in S, Vd ← v, and V ′ = V \ v;
5 while |Vd| < m do
6 find u ∈ V ′ as a node that is adjacent to last node in Vd;
7 Vd = Vd ∪ {u}, V ′ = V ′ \ u;
8 end
9 treat PDP switches in Vd as a big switch, deploy S′′ on the big

switch, and compute total hop-count as hm;
10 for each i ∈ [1,M ] do
11 for each node v ∈ Vd do
12 V ′

d = Vd;
13 randomly select an adjacent node u of v that is not in

V ′
d , replace the next node of v in V ′

d with u, and
update subsequent nodes in V ′

d accordingly;
14 treat PDP switches in Vd as a big switch, deploy S′′

on the big switch, and compute total hop-count as h′;
15 if h′ < hm then
16 hm = h′, Vd = V ′

d ;
17 break;
18 end
19 end
20 end

as OSFC. We compare OSFC against two benchmarks: 1)
Benchmark 1, which replaces Algorithm 1 in OSFC with a
simple greedy approach that merges all the SFCs in S to a
longest SFC superset, and 2) Benchmark 2, which replaces
Algorithm 2 in OSFC with the table merging scheme in pSFC
[17] (i.e., only considering Exact Merge). All the heuristics
set the upper-limit of iterations in Algorithm 3 as M = 5. The
simulations obtain each data point by averaging the results of
10 independent trials and mark the 95% confidence intervals.

B. Small-Scale Simulations

The small-scale simulations employ the 6-node topology, set
|S| ∈ [2, 6] and α = 0.6, and make each SFC contain [3, 5]
vNFs to serve fi = 100 flows. We limit the ILP’s running
time to 10 hours (36, 000 seconds), opting for the best solution
attained within this duration if the optimal result has not been
obtained. Fig. 4 shows the results of small-scale simulations,
which indicate that OSFC approximates the ILP better than the
two benchmarks, in terms of both the number of used stages
and average total hop-count of SFC paths. As depicted in Fig.
4(a), the rise in OSFC’s stage usage is more gradual with an
increase in SFCs, suggesting that its consolidation strategy can
use the memory resources in PDP switches more effectively.

C. Large-Scale Simulations

The large-scale simulations do not consider the ILP due
to its complexity, use the 24-node USB topology, set |S| ∈
[10, 30], and make each SFC contain [3, 10] vNFs to serve
fi = 1, 000 flows. The results in Fig. 5 still confirm that OSFC
outperforms the two benchmarks. The comparison between
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Fig. 4. Results of small-scale simulations.

OSFC and Benchmark 1 demonstrates that OSFC’s approach
of coarse-grained SFC merging efficiently reutilizes memory
resources for vNFs, thereby reducing the redundancy of logic
units in them and minimizing the usage of stages in PDP
switches. Meanwhile, contrasting OSFC with Benchmark 2
underscores the effectiveness of our proposed fine-grained
merging strategy in minimizing resource redundancy.

VI. CONCLUSION

This paper explored the optimization of initial deployment
of stateful SFCs on P4-enabled PDP switches. We commenced
by first developing an ILP model and then designing a time-
efficient heuristic to solve the problem quickly. Extensive
simulations demonstrated that our proposals efficiently accom-
modate stateful SFC requests. Notably, our heuristic closely
approximated the ILP’s optimal outcomes and remarkably
outperformed two existing benchmarks.
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