
1

Information-Sensitive In-band Network Telemetry in
P4-based Programmable Data Plane

Zichen Xu, Ziye Lu, and Zuqing Zhu, Fellow, IEEE

Abstract—With the development of programmable data plane
(PDP), in-band network telemetry (INT) has become a promising
network monitoring technique to visualize network operations in
a fine-grained and real-time way. In this work, to better balance
the tradeoff between INT overheads and monitoring accuracy, we
design and optimize an information-sensitive INT system (namely,
P4InfoSen-INT), which makes each PDP switch decide locally
whether and what type(s) of telemetry data should be inserted
in a packet based on the “information content” of the data,
and implement it in P4-based PDP switches. We first realize
the basic principle of P4InfoSen-INT with P4 programs. Then,
we propose algorithms to estimate the information content of
telemetry data accurately in a dynamic network and optimize
the tradeoff between INT overheads and monitoring accuracy.
Finally, we further optimize the implementation of P4InfoSen-
INT by proposing table merging to reduce stage occupation
in each switch. Experimental results verify that our proposed
P4InfoSen-INT can balance the tradeoff between INT overheads
and monitoring accuracy better than existing benchmarks.

Index Terms—Programmable data plane (PDP), Tofino, P4,
In-band network telemetry (INT), In-network computing.

I. INTRODUCTION

OVER past decades, network traffic has grown dramati-
cally due to the fast development of data-centers (DCs)

[1–4] and 5G networks [5, 6], and simulated various network
technologies, e.g., software-defined networking (SDN) [7, 8],
virtual network slicing [9–11], and network function virtual-
ization (NFV) [12–14]. Consequently, networks are becoming
increasingly flexible and programmable at the cost of increased
complexity, making network monitoring and troubleshooting
more and more challenging [15]. Note that, in today’s Internet,
network operators need to not only provision highly-dynamic
traffic but also satisfy more stringent and diversified quality-of-
service (QoS) demands [16–18], and thus they have to monitor
their networks in a fine-grained and real-time manner, such
that network anomalies (e.g., congestions and misconfigura-
tions) can be detected, located and recovered promptly.

However, traditional polling-based network monitoring ap-
proaches (e.g., SNMP [19], sFlow [20], and Netflow [21]) can
hardly cope with the aforementioned emerging requirements.
First, they normally need to place an agent on each monitored
network element (NE) to collect and report status data, which
consumes the NE’s computing and forwarding resources and
thus might impact its packet forwarding performance. Second,
as these techniques let NEs report status data periodically or

Z. Xu, Z. Lu and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China, Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on July 31, 2023.

on demand in the out-of-band manner, they have difficulty pre-
cisely catching real-time status of a highly-dynamic network.
Lastly but most importantly, they cannot reveal the end-to-end
operation of packets in an arbitrary flow.

The rising and development of programmable data plane
(PDP) [22, 23] provide new opportunities for network mon-
itoring. Specifically, the programming protocol-independent
packet processor (P4) [22] and the protocol oblivious for-
warding (POF) [23] have been developed for realizing PDP,
both of which can customize the packet processing in a switch
to support new network monitoring schemes such as in-band
network telemetry (INT) [24, 25]. INT lets the ingress switch
of a flow insert INT instructions in packets, based on which
each subsequent switch collects the network status that a
packet sees and encodes the obtained telemetry data as INT
fields in the packet. Then, the egress switch extracts the INT
fields to recover how the packet gets processed hop-by-hop.
Previous studies have implemented INT with both P4 [26] and
POF [27], achieving flow-oriented and real-time monitoring.

Despite its benefits, INT increases packet lengths and brings
in extra bandwidth and packet processing overheads. There-
fore, researchers previously have proposed various techniques
to reduce the overheads of INT, including sampling packets for
INT field insertion [27, 28], distributing different types of INT
fields among packets [26, 29], or probabilistically selecting
telemetry data types to insert [30]. Although these sampling-
based techniques have all shown their effectiveness, there are
still unsolved problems. Specifically, sampling packets for INT
can indeed relieve bandwidth overheads, but it would also
reduce monitoring accuracy inevitably. Hence, it is still not
clear how to determine and adjust the sampling rate of INT
such that the tradeoff between INT overheads and monitoring
accuracy can be optimized in a dynamic network environment.
To the best of our knowledge, this issue is still under-explored.

In [31], we proposed the idea of information-sensitive INT,
which is to let each switch determine whether and what type(s)
of telemetry data should be inserted in a packet locally, based
on the “information content” of telemetry data. In other words,
the INT fields of various types of telemetry data are prioritized
according to the amount of information that they can convey
to the network monitoring system. For instance, the telemetry
data indicating a sudden increase of packet processing latency
can convey more information than the normally-used output
port of a packet flow, and thus it should be reported with a
higher priority. To demonstrate the idea quickly, we realized it
with software-based POF switches (namely, EntropyINT [31]).

However, the study on information-sensitive INT in [31]
is still preliminary from both the system and algorithm per-

2

spectives. In the system aspect, software switches perform
significantly worse than hardware switches on packet process-
ing. For example, a P4-based PDP switch with Tofino ASICs
can deliver 12.8-Tbps throughput with line-rate up to 400
Gbps [32], while its cost is not prohibitively high [33]. Note
that, it is still challenging to implement information-sensitive
INT in such a hardware switch, even though the software-
based approach has already been realized in [31]. This is
because in order to do so, we have to address unique hardware
restrictions properly and optimize the system design from the
scratch. The hardware restrictions of PDP switch (e.g., it can
only store integer and does not support numerical operations
like multiplication and division) prevent us from realizing the
principle of information-sensitive INT directly. Furthermore,
PDP switch only has limited memory, restricting the number
of stages that a pipeline can include. This makes it vital for us
to optimize the stage usage of information-sensitive INT with
table merging, which is known to be challenging [33–35].

In the algorithm aspect, EntropyINT [31] did not address
the problem of adapting information-sensitive INT to dynamic
networks. Without the algorithm to determine when and how
to update the status of information-sensitive INT in each
switch adaptively, EntropyINT cannot estimate the information
content of each telemetry data accurately in a dynamic network
or balance the tradeoff between INT overheads and monitoring
accuracy properly. Hence, the missing of algorithm design in
[31] makes its system incomplete, and thus the benefits of
information-sensitive INT were not fully explored to optimize
the tradeoff between INT overheads and monitoring accuracy.

The aforementioned restrictions of EntropyINT motivate us
to implement and optimize information-sensitive INT in P4-
based hardware PDP switches. This work continues to opti-
mize information-sensitive INT such that it can be implement-
ed in PDP switches built with Tofino ASICs, and demonstrates
an adaptive, efficient and real-time network monitoring system,
namely, P4InfoSen-INT. The basic principle of information-
sensitive INT is first realized with P4 programs. Then, we
propose algorithms to help P4InfoSen-INT accurately estimate
the information content of each telemetry data in a dynamic
network, optimizing the tradeoff between INT overheads and
monitoring accuracy. Finally, we further optimize the imple-
mentation of P4InfoSen-INT by proposing table merging tech-
niques to reduce stage occupation in each switch. Experimental
results verify that our proposed P4InfoSen-INT can balance
the tradeoff between INT overheads and monitoring accuracy
better than the existing benchmarks.

Our major contributions can be summarized as follows:
• We design and implement P4InfoSen-INT, which is an

information-sensitive INT system that can realize flow-
oriented, real-time and adaptive network monitoring.

• We optimize the data plane implementation of P4InfoSen-
INT to reduce the stage occupation of its packet process-
ing pipeline in each P4-based hardware PDP switch.

• We propose algorithms to facilitate the control plane im-
plementation of P4InfoSen-INT, such that the information
content of each telemetry data can be estimated accurately
in a dynamic network and the tradeoff between INT
overheads and monitoring accuracy can be balanced well.

• We build a small-scale but realistic network testbed to
demonstrate P4InfoSen-INT experimentally and verify its
benefits over the existing benchmarks.

The rest of the paper is organized as follows. Section II
discusses the related work briefly. We present the system
design and operation principle of P4InfoSen-INT in Section
III. Our proposed algorithms for optimizing the data plane
implementation and facilitating control plane operations are
described in Sections IV and V, respectively. In Section VI,
we show the experimental demonstrations for performance
evaluation. Finally, Section VII summarizes this paper.

II. RELATED WORK

Due to its advantages, INT has spurred extensive research
activities and has been standardized in [24]. People have
implemented INT in switches based on P4 [26] and POF
[27], and deployed them to monitor various networks [36, 37].
However, the early day implementations of INT (e.g., that in
[38]) inserted INT fields without considering the overheads,
which means that when a flow is selected for INT, each switch
on its routing path will insert all the required INT fields in
each of its packets. This will lead to extremely high bandwidth
overheads, where some of them might not be necessary.

The studies in [39] and [40] have addressed how to reduce
the bandwidth overheads when using the per-packet INT
scheme. Specifically, they proposed algorithms to plan the
routing paths of INT-enabled flows such that the coverage of
network monitoring can be maximized and the collection of
redundant telemetry data can be avoided. However, these ap-
proaches did not try to optimize the operation principle of INT
to minimize its overheads. Researchers have also considered
to filter out redundant telemetry data before sending it to the
control plane in [41, 42]. Although they effectively relieved the
data processing load in the control plane, they cannot reduce
the bandwidth overheads of INT in networks.

Note that, sampling network status in the per-packet manner
might not be necessary, because the working status of a switch
usually would not change dramatically in a very short time,
especially in metro or core networks where the line-rate is
relatively high (i.e., in Gbps or even higher [43]). Therefore,
the studies in [26–30] considered to sample packets or/and
types of telemetry data for INT field insertions to relieve the
bandwidth overheads of INT. The approaches developed in
[26–29] selected a portion of packets in each flow to insert
INT fields, the work of [26, 29] tried to distribute different
types of telemetry data among packets, and the authors of
[30] proposed to sample different types of telemetry data
with preset probabilities. Even though these sampling-based
schemes did reduce the overheads of INT effectively, they have
not addressed how to determine the sampling ratio adaptively
in a dynamic network such that the tradeoff between INT
overheads and monitoring accuracy can be balanced well. In
[44, 45], we addressed the selection of sampling rate for INT
adaptively, but it was from the perspective of ensuring that
the extra bandwidth overheads caused by INT will not cause
congestion on already heavy-loaded links.

We proposed EntropyINT in [31], implemented it on soft-
ware switches, and demonstrated that it could balance the

3

Routing Path

Hardware PDP Switch

Host Normal Packet Field

INT Field
DA

Data Plane

Control Plane

TED

Telemetry

Orchestrator

Network Monitor

Report

Handler

Centralized Controller

App 1 App N

Network Control

…

P4InfoSen-INT Monitoring Channel

DA

Flow-level

Monitor

Data

Storage

Control Monitor

Anomaly

Handler

Sampling

Rate Arbiter
Host 1 Host 2e

b c

da

f

Information

Content Updater

Fig. 1. System architecture of network with P4InfoSen-INT, TED: Traffic engineering database, DA: Data analyzer.

TABLE I
MAJOR ABBREVIATIONS

Abbrev. Full Name Abbrev. Full Name
PDP Programmable data plane PMT Priority mapping table
INT In-band network telemetry data TCAM Ternary content addressable memory
QoS Quality-of-service SRAM Static random-access memory
NE Network element PHV Packet header vector
DA Data analyzer MPMT Merged priority mapping table

TED Traffic engineering database PRMT Probability mapping table
MAU Match-action unit TM Table merging
MAT Match-action table TEM Table entry merging

tradeoff between INT overheads and monitoring accuracy bet-
ter than existing approaches. Nevertheless, as we have already
explained, the packet processing performance of EntropyINT
was severely limited by software switches, and algorithms
have not been designed to enable the control plane operations
such that the information content of each telemetry data
can be estimated accurately in a dynamic network and the
tradeoff between INT overheads and monitoring accuracy can
be further optimized. Therefore, to the best of our knowledge,
this is the first work to design and optimize a high-performance
information-sensitive INT system based on hardware switches.

III. SYSTEM DESIGN AND OPERATION PRINCIPLE

This section will first give an overview of our design, and
then describe the system architecture and operations in data
and control planes. As several acronyms are frequently used in
this paper, we list them in Table I for the readers’ convenience.

A. Design Overview

As monitoring flow performance with per-packet INT is nor-
mally not necessary [27], we design P4InfoSen-INT to let each
switch sample packets of a flow with a dynamic sampling rate,
which reflects the interval between two consecutive packets
that contain INT fields and is adjusted adaptively according to
real-time network status, such that the tradeoff between INT
overheads and monitoring accuracy can be balanced optimally.
The ultimate goal of flow monitoring is to detect and locate
network anomalies accurately and promptly. Meanwhile, it is
known that network anomalies usually happen with a much
lower probability than normal network state (e.g., in normal
network operation, congestion only occurs occasionally on a
switch). This suggests that if the probability of occurrence of a
telemetry data value is smaller, the data actually conveys more

information to flow monitoring. Hence, we can quantify the
importance of telemetry data (or its information content) based
on its probability of occurrence and make each switch select
and insert telemetry data in packets accordingly. Specifically,
when a packet is selected for INT field insertion, the switch
inserts the telemetry data with the largest information content.
Then, P4InfoSen-INT is designed to realize such a mechanism
automatically during flow monitoring.

B. System Architecture

The system architecture is shown in Fig. 1. There are
three types of NEs in the data plane, i.e., the end hosts, P4-
based switches with Tofino ASICs, and data analyzers (DAs).
The end hosts send/receive application traffic, the switches
are programmed to support P4InfoSen-INT, and the DAs
are designed to analyze collected telemetry data and report
digested network status to the control plane. In a DA, the flow-
level monitor parses and extracts the telemetry data encoded
in the INT fields of INT packets1, and records and analyzes
the data in its data storage. When an anomaly is detected, it
is sent to the anomaly handler, which will forward it to the
control plane through the P4InfoSen-INT monitoring channel
for further processing. Otherwise, the sampling rate arbiter
and information content updater assist the control plane to
adjust the sampling rate and information mapping scheme of
telemetry data for P4InfoSen-INT. Note that, as INT packets
are mirrored to DAs by the egress switches of flows, DAs are
placed at the edge of the network. Therefore, the DAs actually
conduct distributed data analytics for real-time and flow-level
monitoring and troubleshooting, which offload a significant
part of network monitoring tasks from the control plane.

The control plane is essentially a centralized SDN con-
troller, for managing switches in the data plane. In the
controller, the traffic engineering database (TED) records
the service provisioning schemes of traffic flows and works
with the network control and network monitor modules to
facilitate network automation. We design two modules in
the network monitor to realize self-adaptive monitoring and
troubleshooting. Specifically, the report handler receives and
analyzes the reports from DAs, while the telemetry orches-
trator arranges the parameters of P4InfoSen-INT running in

1We refer to each packet that contains INT fields as an “INT packet”.

4

switches. Therefore, both the report handler and telemetry
orchestrator need to interact with the network control module.
The report handler will forward the anomalies that it detects to
the network control module, which will then adjust the provi-
sioning schemes of affected flows to restore their services. On
the other hand, the telemetry orchestrator consistently analyzes
the working status of flows and their settings of P4InfoSen-
INT, to determine whether the settings of P4InfoSen-INT need
to be updated and how to update them accordingly. Then, if
necessary, the telemetry orchestrator will suggest the network
control module to update the settings of P4InfoSen-INT to
adapt to dynamic network status and QoS demands of flows.

C. Data Plane Operations

1) Background on Switch with Tofino ASICs: Before de-
scribing the data plane operations, we first briefly introduce the
architecture of a hardware switch with Tofino ASICs. In Fig. 2,
such a switch leverages ingress and egress pipelines to process
packets, where each pipeline consists of blocks such as a
Parser, multiple Match-Action Units (MAUs), and a Deparser
[22]. Each MAU occupies a stage, which represents a unit
of packet processing resources in one pipeline. The space of
the static random-access memory (SRAM) and ternary content
addressable memory (TCAM) in a pipeline is evenly allocated
to each stage in it. As the Parser, MAUs and Deparser are all
programmable with P4 language, we can customize packet
processing in the switch with great flexibility.

When a packet arrives, it first enters the Parser in the ingress
pipeline, which extracts its header fields, then passes through
MAUs to experience lookup tables and the corresponding
actions, and finally exits the ingress pipeline at Deparser,
which encapsulates its header fields back. Similar operations
are performed in the egress pipeline. The header fields and
metadata (e.g., intermediate results from table lookup) are
stored in the packet header vector (PHV) containers in each
stage, whose lengths can be {8, 16, 32} bits and total space is
fixed. Then, the parameter transfers between adjacent blocks
in a pipeline can be realized with the PHV containers.

2) Principle of P4InfoSen-INT: We implement and opti-
mize our information-sensitive INT (namely, P4InfoSen-INT)
in hardware PDP switches. The idea of P4InfoSen-INT is to
1) sample packets in a flow to insert INT fields that contain
telemetry data about the flow’s forwarding status, and 2)
introduce stateful processing in switches such that they can
make local decisions to tell what type(s) of INT fields should
be inserted in each INT packet based on the fields’ information
contents. Specifically, if we denote the probability that a type
of discrete telemetry data Y (e.g., Out Port) takes value yi as

T
ra

ff
ic

 M
a

n
a

g
e

m
e
n

tParser
Match-

Action Units
Deparser

Parser
Match-

Action Units
Deparser

Parser
Match-

Action Units
Deparser

Parser
Match-

Action Units
Deparser

Parser
Match-

Action Units
Deparser

Parser
Match-

Action Units
Deparser

Parser
Match-

Action Units
Deparser

Parser
Match-

Action Units
Deparser

Ingress Pipeline Egress Pipeline

Packet in Packet out

Fig. 2. Packet forwarding architecture of Tofino-based switch.

Match Action Action Data

data: !: exact get_priority() priority = !
"

default set_priority() priority = !
"

(a) MAT for a type of discrete telemetry data

Match Action Action Data

data: [!
" , #

"): range get_priority() priority = !

data: [!
" , #

"): range get_priority() priority = !

" " "

data: [!"#
$, !

$): range get_priority() priority = !

(b) MAT for a type of continuous telemetry data

Fig. 3. Designs of a PMT based on MATs for different telemetry data types.

PMT

 ! " #

P4InfoSen-INT

Module

Arbiter

Registers

Prioritized INTPolling-based INT

Telemetry data

Fig. 4. Operation principle of P4InfoSen-INT.

P (Y = yi), and that of a type of continuous telemetry data
Y ′ (e.g., Bandwidth) in range [y′i, y

′
i+1) as P (Y ′ ∈ [y′i, y

′
i+1)),

their information contents are{
Ii = − log2[P (Y = yi)],

I ′i = − log2[P (Y ′ ∈ [y′i, y
′
i+1))].

(1)

Eq. (1) provides us a method to quantitatively compare the
importance of telemetry data in different types [31]. However,
due to its limited arithmetic capability, Tofino ASIC cannot
directly calculate or store information contents. Therefore,
we design a priority mapping table (PMT) by leveraging the
match-action tables (MATs), as shown in Fig. 3. Specifically,
we use MATs that have exact match type for discrete telemetry
data, and those with range match type for continuous telemetry
data, while the “action” of each MAT denotes the priority of its
telemetry data. Here, the ranges of the match key in Fig. 3(b)
are in ascending order, i.e., y′i < y′i+1,∀i. Then, we can let the
SDN controller calculate and sort the information contents of
all the data types in ascending order and incrementally assign
integer priorities to them, forming the PMTs in switches.

Similar to the existing selective INT schemes [27, 30],
P4InfoSen-INT also samples packets in each monitored flow
for INT operations, i.e., within each sampling cycle, only
one packet in the flow will be selected to be inserted INT
fields and become an INT packet. Then, we design two INT
operations for P4InfoSen-INT, namely, polling-based INT and
prioritized INT. The polling-based INT is introduced to avoid
the situation where certain types of telemetry data will not be
collected for a long time, and thus it just lets a switch encode
all the telemetry data selected for a flow in one INT packet.

The procedure of the prioritized INT in P4InfoSen-INT can
be explained with Fig. 4, where we allocate three registers (i.e.,
R1, R2 and R3) to each monitored flow. Here, R2 will store

5

Eth IP TCP Payload

Out Port In Port Queue Time Bandwidth

INT field 1

IP.protocol = 0xff

MapInfo DeviceID Metadata

Hop Count

INT header

INT field 2 INT field n

(a) Prioritized INT packet

Eth IP TCP PayloadINT field 1

IP.protocol = 0xfe

Hop Count

INT header

INT field 2 INT field n

Out Port In Port Queue Time BandwidthDeviceID

(b) Polling-based INT packet

Fig. 5. Formats of INT packets in P4InfoSen-INT.

the value of the telemetry data that has the highest information-
aware priority in the current sampling cycle, and R1 and R3

store the data’s priority and type ID, respectively. Then, upon
receiving each packet of a monitor flow, a switch collects all
types of telemetry data selected for the flow, uses the arbiter to
check the PMT and find the data with the highest priority, and
sends the data and its parameters (i.e., its priority and type ID)
to the registers. The switch then compares the data’s priority
with that of the data currently stored in R2, and updates the
registers if the new data’s priority is higher. Then, when the
current sampling cycle ends, the switch encodes an INT field
with the data in R2 and inserts it in the INT packet. Therefore,
prioritized INT always reports the telemetry data with the
largest information content in each sampling cycle.

3) Packet Formats: The principle of P4InfoSen-INT de-
termines that there will be three types of packets, i.e., the
normal packets that are not selected for INT operations, the
prioritized INT packets that carry the telemetry data with
the highest priority, and the polling-based INT packets that
carry all types of selected telemetry data. The latter two are
for INT packets and their formats are shown in Fig. 5, which
are adapted from the standard INT packet format defined in
[24] with only minor modifications.

In each INT packet, P4InfoSen-INT inserts an INT header
in between its TCP/UDP header and payload at each switch
on its flow’s routing path. We leverage the “protocol” field
in IP header to indicate the type of a packet. Specifically,
the field is modified to 0xff or 0xfe by an ingress switch to
mark a prioritized INT packet or polling-based INT packet,
respectively, and is restored to its original value by an egress
switch. Each INT header contains a field of Hop Count
followed by a number of INT Fields, which is the same for
prioritized and polling-based INT packets as shown in Fig. 5.
Hop Count is a one-byte field whose value tells how many
hops that the INT packet has experienced, and each INT Field
contains the telemetry data collected on one switch.

Each INT Field in a prioritized INT packet contains three
subfields: MapInfo, DeviceID and Metadata. MapInfo contains
one byte to indicate the type of the telemetry data whose value
is encoded in the 2-byte Metadata, and DeviceID stores the
unique 4-byte ID of the switch that encodes the INT Field. We
design P4InfoSen-INT to support four types of telemetry data,

Algorithm 1: Collection of bandwidth usage
Input: Collection period ∆t
Output: Bandwidth usage B

1 set up registers R4 = {τ} (time) and R̃1 = {c1, c2} (counters);
2 τ = c1 = c2 = 0;
3 while one packet of the monitored flow arrives do
4 get current system time t and packet length L;
5 if t− τ ≥ ∆t then
6 τ = t, c1 = c2, c2 = L;
7 else
8 c2 = c2 + L;
9 end

10 return B = c1;
11 end

i.e., Queue Time, Bandwidth, In Port and Out Port, each of
which corresponds to a value of MapInfo. Here, Queue Time
is the queuing time experienced by the packet, Bandwidth is
the current bandwidth usage of the packet’s output port, and In
Port and Out Port tell the IDs of the input and output ports of
the packet, respectively. On the other hand, each INT Field in a
polling-based INT packet consists of five subfields: DeviceID,
Out Port, In Port, Queue Time and Bandwidth, since it might
encode all types of telemetry data in an INT packet.

4) Collection of Bandwidth Usage: As division is not well
supported by Tofino ASICs, each switch can hardly calculate
bandwidth usage directly. Hence, we let each switch count the
data volume through an output port within a fixed period ∆t,
as the port’s bandwidth usage, as explained in Algorithm 1.
We initialize two registers R4 and R̃1 for time and counters,
respectively, in Lines 1-2. Here, as R̃1 can store two counters,
it is different from the R1∼R3 in Fig. 4 and R4, each of which
only stores one value. When a packet arrives, Line 4 gets the
current system time and the packet’s length in bytes. Then, if
the current collection period has expired, Line 6 updates the
values stored in R4 and R̃1. Otherwise, Line 8 only adds the
packet length to c2 (i.e., the counter in R̃1 for the accumulated
date volume in the current period). Finally, Line 10 returns c1
(i.e., the counter in R̃1 for the accumulated date volume in the
previous period) as the current bandwidth usage.

5) Design of Pipelines in Switch: To implement P4InfoSen-
INT, we make each switch support prioritized INT and polling-
based INT simultaneously. As for prioritized INT, the switch
collects different types of telemetry data, finds the one that has
the highest priority within each sampling cycle, and encodes
it in a prioritized INT packet. As for polling-based INT, the
switch only encodes all types of telemetry data in a polling-
based INT packet directly. Fig. 6 shows the design of the
stages in ingress and egress pipelines of a switch. As the opera-
tions in the two pipelines can be performed simultaneously for
different packets, their tables can be arranged in same stages.

In the ingress pipeline, Ipv4 Tbl determines the output
port of a packet, Hash Tbl calculates a hash value based
on the packet’s 5-tuple (i.e., its source and destination IP
addresses, source and destination layer-4 ports, and protocol)
to identify its flow, and INT Tbl sets flag1 to 1 if the flow
has been selected to be monitored. If we have flag1 = 1,
three registers R4, R5 and R6 are allocated to process the

6

Stage 0 Stage 1 Stage 2 Stage 3 Stage 7Stage 4 Stage 5 Stage 6

Ipv4_Tbl

Hash_Tbl

INT_Tbl Reg_Tbl_A Reg_Tbl_B Sele_Tbl

Data_Tbl PMT_Tbl

Stage 8

Sub_Tbl_A Com_Tbl Sub_Tbl_B Max_Tbl Reg_Tbl_C Reg_Tbl_D Add_Tbl

get telemetry

data
get priority

set out port,

id = hash(key)

key = id

!"#$% = 0 or 1

 !"#$ = 1

!"++,

 !"#$ = 0 or 1

 ! = ! "

#$%&' = 1,

 !++

 !
" # $

",

 !
" # $

"

%&'
(= &'

(or &)
" ,

 !"
= !$

or !%
& '()

& * '("
& !&+,

& = !)
or !"

update !

"# = !"

#$%&' = 1

update

 ! and !

"#$%& = 1

insert INT

fields

Packet processing stages

Actions of each stage

MAT in ingress pipe MAT in egress pipe

action in ingress pipe action in egress pipe

Fig. 6. Stage design for implementing P4InfoSen-INT in a Tofino-based hardware PDP switch.

Algorithm 2: Procedure of P4InfoSen-INT
Input: INT sampling interval N1, polling cycle N2, and PMT.

1 initialize registers R1 = {p}, R2 = {v}, R3 = {id},
R5 = {n1} and R6 = {n2};

2 p = v = id = n1 = n2 = 0;
3 while one packet of the monitored flow fm arrives do
4 apply Algorithm 1 for bandwidth collection;
5 get telemetry data and build Dm by checking PMT;
6 find telemetry data Dm

max with the highest priority;
7 n1 = n1 + 1;
8 if n1 = 1 then
9 p = pmmax, v = vmmax, id = idmmax;

10 else
11 if pmmax ≥ p then
12 p = pmmax, v = vmmax, id = idmmax;
13 end
14 end
15 if n1 = N1 then
16 mark the packet as an INT packet;
17 n1 = 0, n2 = n2 + 1;
18 if n2 = N2 then
19 encode telemetry data in Dm

1 , Dm
2 , Dm

3 and Dm
4

in the polling-based INT packet;
20 set the protocol field in IP header to 0xfe;
21 n2 = 0;
22 else
23 encode telemetry data stored in R2 and R3 in the

prioritized INT packet;
24 set the protocol field in IP header to 0xff ;
25 end
26 end
27 end

packet. As explained in Algorithm 1, R4 records the time when
the current bandwidth collection period starts. R5 stores the
currently-accumulated number of packets in the flow. Upon
receiving a packet, the operations on R4 and R5 are governed
by Reg Tbl A and Time Tbl, which increase the value of R5

(n1) by 1 and update R4 according to Algorithm 1. Here, flag2
indicates whether the current bandwidth collection period has
expired or not. R6 stores how many times that the prioritized
INT has been performed on the flow (n2), which is updated
by Reg Tbl B. Finally, Sele Tbl tells the egress pipeline to
perform prioritized INT or polling-based INT based on flag4.

In the egress pipeline, Data Tbl gets the values of the four
types of telemetry data. PMT Tbl determines the priority of
each piece of data by checking the PMT. Here, we define the
i-th type of telemetry data of a monitored flow fm as Dm

i =
{vmi , pmi , idmi }, where vmi denotes the value of the telemetry
data, and pmi and idmi are its priority and type ID, respectively.
For each packet of flow fm, a switch gets a set of telemetry
data as Dm = {Dm

1 , D
m
2 , D

m
3 , D

m
4 }, denoting the related

Bandwidth, Queue Time, Out Port, and In Port, respectively.
Then, Sub Tbl A, Com Tbl A and Com Tbl B compare two
types of telemetry data with Eq. (2), i.e., applying Eq. (2) to
Dm

1 , Dm
2 and Dm

3 , Dm
4 , to get D̂m

1 and D̂m
2 , which are the

data types with higher priorities and D̂m
i = {v̂mi , p̂mi , îd

m

i }.

D̂m =

{
Dm

i , pmi − pmj ≥ 0,

Dm
j , otherwise.

(2)

Next, Sub Tbl B and Max Tbl compare D̂m
1 and D̂m

2 similarly
to get the telemetry data Dm

max = {vmmax, p
m
max, id

m
max} whose

priority is the highest among the four data types. Reg Tbl C,
Reg Tbl D and Reg Tbl E read and update registers R1∼R3

if the priority of Dm
max is higher than that of the telemetry data

currently stored in R2. Finally, Add Tbl selects to perform
prioritized INT or polling-based INT based on the flag4 from
the ingress pipeline. Specifically, Add Tbl performs prioritized
INT with the values stored in registers R2 and R3 if we have
flag4 = 0, and it conducts polling-based INT, otherwise.

With the stage design in Fig. 6, the procedure of P4InfoSen-
INT can be summarized with Algorithm 2, where N1 is the
INT sampling interval (i.e., out of how many packets an INT
packet is selected) and N2 defines the cycle of polling-based
INT (i.e., out of how many INT packets a polling-based INT
packet is selected). We have open-sourced the P4 codes for
implementing Algorithm 2 on a Tofino-based switch in [46].

D. Control Plane Operation

The control plane overlooks switches in the network and
performs global adjustments to further optimize the tradeoff
between bandwidth overheads and monitoring accuracy of
P4InfoSen-INT. Specifically, the control plane mainly handles
two tasks: 1) adjusting the INT sampling interval N1 of each

7

monitored flow, and 2) updating the PMTs on switches for
each monitored flow. In the following, we will briefly explain
our design to handle the first task, while the optimization for
the second task will be discuss in Section V.

For selective INT schemes, INT sampling interval is the key
parameter to adjust the tradeoff between bandwidth overheads
and monitoring accuracy [27, 28, 30]. However, to the best of
our knowledge, the problem of how to select INT sampling
interval adaptively is still under-explored. In our previous work
[31], we proposed to adjust it based on the predicted peak
bandwidth usage in the future, to avoid INT causing unneces-
sary congestions in a network. Nevertheless, the approach did
not try to adjust INT sampling interval to optimize the tradeoff
between bandwidth overheads and monitoring accuracy, and
moreover, not all the traffic patterns are predictable. Therefore,
in this work, we let the SDN controller cooperate with DAs
to adjust INT sampling interval adaptively based on real-
time collected telemetry data. Specifically, as shown in Fig.
2, the sampling rate arbiter in each DA analyzes and sends
the telemetry data on bandwidth usage to the controller, which
will update the sampling intervals in switches accordingly.

Algorithm 3: INT sampling interval adjustment
Input: Sampling interval N1, bandwidth collection period ∆t,

threshold δ.
1 Bm

last = 0;
2 while DA receives bandwidth data bm of flow fm do
3 calculate bandwidth usage Bm = bm·8

∆t
;

4 if |Bm −Bm
last| ≥ δ then

5 get a new sampling interval N ′1 with Eqs. (3) and (4);
6 if N ′1 6= N1 then
7 N1 = N ′1, Bm

last = Bm;
8 update the sampling intervals in related switches;
9 end

10 end
11 end

To obtain an appropriate sampling interval, we first define
the average INT header length LINT of INT packets when
they reach egress nodes as

LINT =
(N2 − 1) · L1 + L2

N2
, (3)

where L1 and L2 are the lengths of INT header in prioritized
INT and polling-based INT packets, respectively, when the
INT packets reach their last hops. Then, we get the new
sampling interval N ′1 for a monitored flow fm as

N ′1 =

⌈
Bm · LINT

η · (Cm −Bm) · Lp

⌉
, (4)

where Cm denotes the maximum bandwidth capacity that fm
can use, η ∈ (0, 1) is a preset parameter representing the ratio
of the available bandwidth that can be used by INT, Bm is
the bandwidth usage based on the historical telemetry data of
fm, and Lp is the average length of normal packets. Then, the
bandwidth overheads introduced by P4InfoSen-INT will not
make the flow use more bandwidth than that allocated to it,
and the tradeoff between bandwidth overheads and monitoring
accuracy of P4InfoSen-INT can be adjusted by changing η.

Match Action Action Data

[!
" , #

"): range get_priority() priority = !

Match Action Action Data

[!"
, !$

#): range get_priority() priority = !

Match Action Action Data

 !: exact get_priority() priority = !

Match Action Action Data

 !: exact get_priority() priority = !

Queue Time

Bandwidth

Out Port

In Port

 !

 "

 #

 $

 %

Match Action Action Data

Queue Time: [!
" , #

"): range

Bandwidth: [!"
, !$

): range

Out Port: !: ternary

In Port: !: ternary

select_queue_time();

select_bandwidth();

select_out_port();

select_in_port();

priority = !

default select_out_port() priority = !

Fig. 7. Example on merging MATs for different types of telemetry data.

Specifically, a larger η leads to a smaller sampling interval
and thus better monitoring accuracy, and vice versa.

The procedure of sampling interval adjustment is shown
in Algorithm 3. Line 3 calculates the actual bandwidth usage
of a monitored flow fm with the collected telemetry data on
Bandwidth. Then, Lines 4-10 determine whether to update the
sampling intervals of the flow in related switches. Specifically,
to avoid updating switches too frequently, the controller gets
a new sampling interval based on δ (Line 4), and will only
update the sampling intervals when necessary (Line 6-9).

IV. OPTIMIZATION OF DATA PLANE IMPLEMENTATION

Although the design in Fig. 6 can realize P4InfoSen-INT
on a hardware switch, it will occupy too many stages there
and thus needs to be further optimized for better scalability.
Specifically, using multiple MATs to find the telemetry data
with the highest priority is resource consuming. In this section,
we propose a novel scheme to merge MATs such that the
related operations can be realized with less stages in a switch.

A. Merging of Tables

In Fig. 6, the process of finding the telemetry data with the
highest priority occupies four stages. This can be optimized
by redesigning the PMT. In Section III, we build the PMT
by customizing an MAT for each type of telemetry data (as
shown in Fig. 3), and then by checking the MATs, a switch
can find the telemetry data with the highest priority. This can
actually be simplified through table merging, i.e., designing an
MAT to handle all types of telemetry data. Fig. 7 shows an
example, where the switch looks up MATs to get the priorities
of telemetry data and then find the one whose priority pm is
the highest. This can also be done with a merged priority
mapping table (MPMT) that takes the four types of telemetry
data as match keys, i.e., there is no need to perform repeated
comparisons anymore and Stages 2-5 in Fig. 6 can be released.

To build MPMT based on the original PMT, we introduce
an entry set for each type of telemetry data. For Bandwidth
or Queue Time, the entry set can be defined as ES

i =
{esi,1, esi,2, · · · , esi,n}, where we have esi,j = {vli,j , vui,j , a, pi,j},
and [vli,j , v

u
i,j) denotes the range of the match key, a de-

notes the action (i.e., “get priority” in Fig. 3(a)), and pi,j

8

Match Action Action Data

Queue Time: [!
" , #

"): range

Bandwidth: [!"
, !$

):range

Out Port: !: ternary

In Port: !: ternary

select_queue_time() priority = !

Queue Time: [!
" , #

"): range

Bandwidth: [!"
, !$

#):range

Out Port: !: ternary

In Port: !: ternary

select_queue_time() priority = !

Match Action Action Data

Queue Time: [!
" , #

"): range

Bandwidth: [!"
, !$

):range

Out Port: !: ternary

In Port: !: ternary

select_queue_time() priority = !

Fig. 8. An example of merging entries of MPMT.

is its action data (i.e., priority). For In Port or Out Port,
we only need to define one entry ensi = {vi, a, p∗i }, where
vi is the match key value that denotes the expected port
number, and p∗i is its action data. Then, the entry set of
MPMT becomes EP = {ep1, e

p
2, · · · , epn}. Here, we have

epj = {v1,m1, v2,m2, v
l
1,kj

, vu1,kj
, vl2,kj

, vu2,kj
, aj ,mpj , pmj},

where v1, v2, [vu1,kj
, vd1,kj

), and [vu2,kj
, vd2,kj

) are the values
and ranges of match keys, respectively, m1 and m2 are the
“masks” of v1 and v2, respectively, aj can be set to one of the
actions in the merged table in Fig. 7, mpj denotes the “match
priority” of the entry, and pmj

is the action data that denotes
the highest priority of the telemetry data. EP can be obtained
with Algorithm 4, which will run in the control plane.

Algorithm 4: Table merging
Input: Entry sets ES

1 and ES
2 , entries ens

1 and ens
2 , and ph

Output: Entry set of MPMT EP

1 EP = ∅, m1 = 0xffff, m2 = 0x0000;
2 get v1, v2, p∗1 and p∗2 from entries ens

1 and ens
2 ;

3 for each entry es1,i in ES
1 do

4 get vu1,i, v
d
1,i and p1,i from entry es2,i;

5 for each entry es2,j in ES
2 do

6 get vu2,j , vd2,j and p2,j from entry es1,j ;
7 get the highest priority pm from p∗1, p∗2, p1,i and p2,j ;
8 set a based on pm;
9 ep = {v1,m1, v2,m1, v

u
1,i, v

d
1,i, v

u
2,j , v

d
2,j , a, 0, pm};

10 store ep in EP ;
11 end
12 end
13 ep1 = {v1,m1, 0,m2, 0,m1, 0,m1, 3, 1, ph − 1};
14 ep2 = {0,m2, v2,m1, 0,m1, 0,m1, 4, 1, ph};
15 store ep1 and ep2 in EP ;
16 set action of default entry according to merged table in Fig. 7;
17 return entry set EP ;

In Algorithm 4, the for-loop in Lines 3-12 traverses all the
entries to get their match key values and action data. Lines 3-
8 get the highest priority of the telemetry data and determine
the corresponding action. For example, if p1,i is the highest
one, a is set to 1. Lines 9-10 generate an entry of the merged
table and store it in EP . Note that, for the exact type MAT in
Fig. 3(a), we can use a default entry to match the unexpected
port numbers. However, in the merged table, one default entry
might not be enough due to the existence of multiple match
keys. Hence, Lines 13-16 are introduced to generate the entries

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Data_Tbl MPMT_Tbl Reg_Tbl_D Add_Tbl

get telemetry

data
get !"#

$ update !
update

 !and !

"#$%&=1->

insert INT

fields

Packet processing stages

Actions of each stage

MAT in egress pipe

action in egress pipe

Reg_Tbl_C

Fig. 9. Implementation of P4InfoSen-INT in a switch with MPMT.

for the unexpected port numbers. The ternary match type
enables us to set a mask to select the effective bit(s) of match
values. Specifically, we set the masks of the entries for In Port
and Out Port to 0xffff and 0x0000 to match to expected and
unexpected port numbers, respectively. However, the telemetry
data that can match to the entry generated by Line 9 will also
match to the entries generated by Lines 13-14, and thus we use
the match priority to determine which entry should be selected.
Specifically, when the data can match to multiple entries, the
entries are prioritized according to their match priorities. The
default entry is used to deal with the case where In Port and
Out Port are both unexpected values.

B. Merging of Table Entries

Next, we try to merge the entries in the MPMT to fur-
ther save memory resources in a switch. Fig. 8 provides an
example on entry merging, where two entries with the same
action(s) are merged. Moreover, a merged entry may be further
merged with other entries. Hence, a well-designed approach
for merging the entries in the MPMT will allow P4InfoSen-
INT to monitor more flows, further improving the scalability
of our proposal. However, as the approach is too specific on the
hardware-related implementation of P4InfoSen-INT, we omit
it here but explain it as the Algorithm 5 in Appendix A.

After optimizing the PMT with MPMT, we design the egress
pipeline of P4InfoSen-INT in a switch as that in Fig. 9,
where MPMT Tbl can get Dm

max directly without doing any
comparison. Therefore, stages can be effectively saved over
the scheme in Fig. 6. Note that, the scheme in Fig. 9 is just
the ideal case, but due to the limited memory resources in
each stage, MPMT Tbl might occupy multiple stages due to
the longer match key and more entries in the merged table.

V. STATUS UPDATE IN CONTROL PLANE

To ensure that P4InfoSen-INT can adapt to dynamic net-
work changes, the control plane needs to update the PMT
on each switch to achieve flexible adjustments of the INT
scheme of a monitored flow. As we have explained in Section
III-B, each PMT stores the priorities of the telemetry data
of a monitored flow, which are obtained by calculating the
information content of each data value with Eq. (1). However,
as Eq. (1) actually determines the information content of a data
value based on the statistical distribution of the data, which
is normally unknown at the initialization of a P4InfoSen-INT

9

Data Type Probability

Queue Time �1,1: �1,1 �1,2: �1,2 ⋯ �1,�1: �1,�1

Bandwidth �2,1: �2,1 �2,2: �2,2 ⋯ �1,�2: �2,�2

Out Port �3,1: �3,1 �3,2: �3,2

In Port �4,1: �4,1 �4,2: �4,2

Fig. 10. Layout of PRMT.

system, we can only initialize each PMT with an estimated
distribution (e.g., the uniform distribution) and update it ac-
cording to the distribution of collected telemetry data during
network operation [31]. Then, the question is how to update
each PMT to ensure that the priorities stored in it can converge
to represent the actual distribution of the PMT’s telemetry data.

With P4InfoSen-INT, a switch checks the PMT for a moni-
tored flow and inserts the telemetry data whose priority is the
highest accordingly. Therefore, the more accurate the PMT is,
the more effective P4InfoSen-INT is to balance the tradeoff
between bandwidth overheads and monitoring accuracy. The
update of each PMT is taken care of by the control plane, by
building and maintaining a probability mapping table (PRMT)
for each PMT. Fig. 10 shows the layout of a PRMT, which
stores the probability distribution of each type of telemetry
data, and the probability distribution is estimated by checking
the telemetry data collected at a DA. Specifically, each row
of the PRMT corresponds to a type of telemetry data, and
we denote the row for the i-th type of telemetry data as
Si = {si,1, si,2, · · · , si,Mi

}, where each element in the row
is si,n = {ri,n, θi,n}. ri,n is a range or value of the i-th type
of telemetry data and θi,n is its probability. θi,n is initialized
with a preset value, and then, according to the analysis done
by the DA, its value is updated after the collection of every
N3 INT packets (an update cycle). Hence, the priorities of the
telemetry data in PMT are updated based on the PRMT.

The update of PRMT can be regarded as a parameter esti-
mation problem. We assume that αt

i,n is the true probability of
the i-th type of telemetry data falling in ri,n in the t-th update
cycle, which is the parameter that we need to estimate, and
thus the distribution of the i-th type of telemetry data in the t-
th update cycle can be denoted as At

i = {αt
i,1, α

t
i,2, · · ·αt

i,Mi
}.

As the DA receives N3 INT packets in each update cycle,
we denote the telemetry data that the DA collects in the
update cycle for a hop as X = {x1, x2, · · ·xN3

}, each of
which is a data set that contains four types of or one type
of data value(s) for a polling-based or prioritized INT packet,
respectively. For the data set xj , we define the probability that
it can be collected under the distribution At = {At

i, i ∈ [1, 4]}
as P (xj | At). Approximately, we can assume that the data
collection of each INT packet is independent, and thus the
likelihood function of X = {x1, x2, · · ·xN3

} is

P (X | At) =

N3∏
j=1

P
(
xj | At) . (5)

At the end of each update cycle t, X is known and
then we need to use it to calculate the maximum likelihood
estimation (MLE) of At according to Eq. (5), which denotes

j-th line of 𝑉𝑖
𝑚

𝑟𝑖,1 𝑟𝑖,2 𝑟𝑖,𝑛 𝑟𝑖,𝑀𝑖

0 0 1 0

𝑥𝑖’,𝑗
PRMT

Lookup

𝑟𝑖’,𝑛

𝑖’ = 𝑖

𝑖’ ≠ 𝑖

Prioritized

INT packet

j-th line of 𝑉𝑖
𝑚

𝑟𝑖,𝑛1 𝑟𝑖,𝑛2 𝑟𝑖,𝑛𝑘 Others

1 1 1 0 0

All 0 All 0

All 1 All 0

𝜃𝑖’,𝑛

(a) The j-th INT packet is a prioritized INT packet

𝑥𝑖,𝑗
PRMT

Lookup

𝑟𝑖,𝑛
j-th line of 𝑉𝑖

𝑚

𝑟𝑖,1 𝑟𝑖,2 𝑟𝑖,𝑛 𝑟𝑖,𝑀𝑖

0 0 1 0

All 0 All 0

Polling-based

INT packet

(b) The j-th INT packet is a polling-based INT packet

Fig. 11. Procedure for updating matrix Vm
i after receiving an INT packet.

the probability distribution of four types of telemetry data in
the current update cycle, i.e.,:

Ât = argmax
At

[
L(At)

]
, (6)

where we define L(At) = log [P (X | At)] because the values
of P (X | At) can be hard to differentiate and log(·) is a
monotonically increasing function to amplify the difference.
In addition, since At is a multi-dimensional variable, it is still
complicated to express P (X | At) and calculate Ât in Eq. (6).
Therefore, we try to introduce extra parameters to denote the
true values/ranges of all types of telemetry data at the sampling
of an INT packet, which are unknown for us. Specifically, we
define a set of hidden variables Zi = {zi,1, zi,2, · · · zi,N3} for
the i-th type of telemetry data, where zi,j ∈ [1,Mi] represents
the index of the column that the value/range of the i-th type
of telemetry data falls in at the sampling of the j-th INT
packet. Thus the hidden variables of four types of telemetry
data at the sampling of the j-th INT packet can be denoted
as a quadruple zj = {z1,j , z2,j , z3,j , z4,j}. For example, when
the first INT packet of an update cycle arrives at a switch, the
value of the first type of telemetry data falls in the range of
the second column r1,2, we have z1,1 = 2. We assume that the
distribution of hidden variables for all the types of telemetry
data are independent of each other.

In order to estimate the distribution of hidden variables
conveniently, we introduce a matrix for each type of telemetry
data of a monitored flow fm, i.e., for the i-th type of
telemetry data, it gets an N3 × Mi matrix Vm

i , to record
its possible values or ranges. Thus we can get a matrix set
Vm = {Vm

1 ,V
m
2 ,V

m
3 ,V

m
4 }, where Vm

1 , Vm
2 , Vm

3 and Vm
4

denote the matrices of the telemetry data of Queue Time,
Bandwidth, Out Port, and In Port in Fig. 10, respectively.

Fig. 11 explains how the DA updates the the j-th row of
Vm

i when it receives the j-th INT packet in an update cycle.
If the INT packet is a prioritized INT packet and we assume
that it contains the i′-th type of telemetry data about a hop,
the DA can denote the data value as xi′,j , find the zi′,j = n
for it from PRMT, and set the value of element Vm

i′ (j, n) to 1.
For the telemetry data other than the i′-th one, the information
content of its value about the hop should be smaller than that
of xi′,j according to the principle of P4InfoSen-INT, since it is

10

(a) Processing latency per packet

(b) Packet processing throughput

Fig. 12. Packet processing performance of switch with P4InfoSen-INT.

not encoded in the INT packet. Therefore, the DA can derive
the possible values or ranges of the type of the telemetry data
from PRMT and update the j-th row of Vm

i as

Vm
i (j, n) =

{
1, θi,n > θi′,n, ∀n ∈ [1,Mi],

0, otherwise.
(7)

On the other hand, if the INT packet is a polling-based INT
packet, the DA can get all the four types of telemetry data
{x1,j , x2,j , x3,j , x4,j}, and the corresponding {zi,j}, and the
matrices Vm are updated as shown in Fig. 11(b). By updating
Vm, we can mark the possible values/ranges of all the types
of telemetry data at the sampling of an INT packet, thereby
estimating the distribution of hidden variables.

With the hidden variables, we get the probability that data
set xj can be obtained under distribution At = {At

i, i ∈ [1, 4]}

P
(
xj | At) =

M1∑
z1,j=1

· · ·
M4∑

z4,j=1

P
(
xj , z1,j , · · · , z4,j | At)

=
∑
zj

P (xj , zj | At),

(8)

where P (xj , zj | At) is the probability of getting xj and zj.
Then, to get Ât in Eq. (6) and update the PRMT and

PMT, we propose an update approach based on the expectation
maximization (EM) algorithm, which is effective for parameter
estimation with hidden variables [47]. The detailed procedure
of the approach is explained in Algorithm 6 in Appendix B.

VI. EXPERIMENTAL DEMONSTRATIONS

In this section, we show real-world experimental demonstra-
tions to verify the effectiveness of our P4InfoSen-INT system.

A. Experimental Setup

We implement our proposed P4InfoSen-INT system in a
real-world testbed with the configuration as shown in Fig.
1. The data plane includes two end hosts, six Tofino-based
switches, and a DA, which are connected through 10GbE
ports. Each end host is emulated with a software traffic
generator/analyzer [48] running on a Linux server, which can
generate/receive packets at a data-rate up to 10 Gbps. The
DA is home-made and also runs on a Linux server, and it
can achieve a packet processing rate of over 2 Mpps. The
experiments let Host 1 send dynamic traffic flows whose data-
rates range within [2, 10] Gbps according to the traces2 in [49],
to Host 2, and the flows are routed through switches a-b-c-d
in sequence. In the control plane, we have a controller running
on a server to manage switches with P4Runtime [50].

The experiments evaluate P4InfoSen-INT against two rep-
resentative benchmarks, i.e., the PINT in [30] and the adap-
tive INT (AINT) in [44]. PINT randomly selects a type of
telemetry data to insert in each INT packet according to preset
probabilities, and AINT polls each type of telemetry data to
insert in INT packets. For fair comparisons, we make PINT
and AINT use the packet formats of P4InfoSen-INT in Fig. 5.

B. Throughput of Switch with P4InfoSen-INT

We first measure the packet processing latency and through-
put of a switch implemented with P4InfoSen-INT, to verify
that our implementation of P4InfoSen-INT does not cause
noticeable degradation on packet processing performance.
Specifically, we send 40 Gbps traffic with different packet
sizes to a switch with P4InfoSen-INT, and Fig. 12 shows the
results averaged over more than 2 million packets. In Fig.
12(a), we can see that the processing latency per packet in the
switch with P4InfoSen-INT is still extremely low even though
it is larger than that in the switch without P4InfoSen-INT. The
results on throughput in Fig. 12(b) further prove the packet
processing performance of P4InfoSen-INT, as the line-rate of
40 Gbps can be achieved for all the tested packet sizes.

C. Resource Consumptions of Implementations

Table II summarizes the resource usages of our implemen-
tations of PINT, AINT, and various versions of P4InfoSen-
INT in a Tofino-based switch. Here, the SRAM/TCAM usages
denote the number of occupied SRAM/TCAM blocks, each
of which contains a fixed amount of corresponding type of
memory resources. Note that, PINT needs to leverage an MAT
with range match type, which uses TCAM, to implement
the probabilistic telemetry data collection, while AINT needs
a counter and an MAT with exact match type, which uses
SRAM, to poll various types of telemetry data. Hence, PINT
consumes more TCAM while AINT uses more SRAM.

As P4InfoSen-INT has more complex operations, it uses
more SRAM blocks, TCAM blocks, and stateful arithmetic
and logic units (ALUs) than PINT and AINT. We can see

2The traces were published online and collected in realistic networks of
research institutions, enterprises and Internet service providers. Specifically,
14 reasonable sources were considered, each of which records traffic traces
in real time with a collection interval of a few minutes.

11

TABLE II
RESOURCE CONSUMPTION IN A TOFINO-BASED SWITCH

Scheme Stages SRAM Blocks TCAM Blocks Stateful ALUs PHV Containers
8-bit 16-bit 32-bit

PINT 5 16 4 4 17 21 8
AINT 5 21 2 5 17 20 8

P4InfoSen-INT w/o TM or TEM 9 31 9 7 26 24 8
P4InfoSen-INT with TM 7 24 59 7 14 23 8

P4InfoSen-INT with TM and TEM 5 22 26 7 14 23 8

(a) Normal status (b) Slight congestion (c) Heavy congestion

(d) In Port is abnormal (e) Out Port is abnormal

Fig. 13. Distributions of telemetry data types collected by INT schemes.

Fig. 14. Traffic trace reconstructed with data collected by P4InfoSen-INT.

that without the optimizations by TM and TEM algorithms,
P4InfoSen-INT occupies 9 stages and more SRAM/TCAM
blocks and PHV containers, affecting the scheme’s scalability
especially when it needs to be implemented with other network
functions. This justifies the necessity of TM and TEM algo-
rithms. As for various versions of P4InfoSen-INT, although
the P4InfoSen-INT with TM can reduce the usage of stages,
SRAM and PHV containers, it significantly increases the usage
of TCAM since the MPMT uses longer match keys and more
table entries. The issue can be relieved by the TEM algorithm
as it reduces the number of table entries in the MPMT.

D. Feature Validation
We then conduct experiments to show the feature of teleme-

try data collection of PINT, AINT and P4InfoSen-INT. Here,
we set the INT sampling rate of the schemes to be the same
such that they encounter the same INT bandwidth overheads.
The distributions of telemetry data types collected by the INT
schemes under normal network status are shown in Fig. 13(a).
It can be seen that PINT prioritizes Bandwidth and Queue
Time as these two types of telemetry data is time-variant while
the data of Out Port and In Port is constant when the network
status is normal. Meanwhile, compared with PINT, P4InfoSen-
INT collects more data on Bandwidth. This is because the
data of Queue Time does not change as significantly as that of
Bandwidth under normal network status, and thus according to
the principle of P4InfoSen-INT, the data samples of Bandwidth
possess larger information contents and should be given higher
priorities for telemetry data collection.

Next, we introduce anomalies regarding Queue Time, In
Port and Out Port and redo the experiments, and Fig. 13(b)-
13(e) show the distributions of collected telemetry data types,
respectively. For each anomaly, we can see that P4InfoSen-
INT accurately selects the abnormal data type to focus more
on. This is because the values/ranges of the abnormal data type
appear rarely in historical data and thus lead to relatively large
information content according to Eq. (1). On the other hand,

12

(a) Distribution when load balancing begins (b) Distribution when PMT is being updated (c) Distribution when PMT has been updated

Fig. 15. Distributions of telemetry data types collected by ingress switch when the network starts to perform load balancing.

(a) Distribution when load balancing begins (b) Distribution when PMT is being updated (c) Distribution when PMT has been updated

Fig. 16. Distributions of telemetry data types collected by egress switch when the network starts to perform load balancing.

as PINT collects telemetry data based on preset probabilities,
it still prioritizes Bandwidth and Queue Time as in Fig. 13(a),
while AINT always treats all the data types equally. The results
in Fig. 13 verify that P4InfoSen-INT can make smart and local
decisions to adjust its data collection scheme adaptively.

Then, we reconstruct the traffic trace of the monitored flow
based on the data on Bandwidth collected by P4InfoSen-INT
when Out Port is abnormal, and the results are plotted in
Fig. 14. We observe that although the data on Bandwidth is
collected much less frequently than the case under normal
network status, the reconstructed trace still approximates the
real one well. This verifies the effectiveness of the coexistence
of prioritized and polling-based INT and Algorithm 1.

Finally, we test the scenario where the network starts to do
load balancing after sending a flow for a while. Specifically,
the flow is first routed over the path a-b-c-d in Fig. 1 only, and
when the load balancing starts, its packets are routed over the
paths a-b-c-d and a-f -e-d alternately. We plot the distributions
of telemetry data types collected by the ingress and egress
switches (switches a and d, respectively) in Figs. 15 and 16,
respectively. Figs. 15(a) and 16(a) show the distributions when
the load balancing begins, which indicate that the ingress and
egress switches respectively collect more Out Port and In Port
telemetry data. This is because when the load balancing has
just started, the new output/input port at the ingress/egress
switch is unexpected from the perspective of the switch’s
current PMT. Then, when the load balancing continues, the
control plane obtains new telemetry data distributions from the
DA and updates the PMTs on the ingress and egress switches
accordingly. Therefore, although the ingress or egress switch
still pays more attention to Out Port or In Port, respectively,

the proportion of Out Port or In Port among all the telemetry
data types decreases because the corresponding PMT is being
updated (as shown in Figs. 15(b) and 16(b)). Next, after the
PMTs have been updated, they can capture the changes of Out
Port or In Port on ingress or egress switch accurately, and Figs.
15(c) and 16(c) indicate that the distributions of telemetry data
types become similar to that in Fig. 13(a), which was collected
before the load balancing starts. The results in Figs. 15 and
16 further confirm that P4InfoSen-INT allows each switch to
make smart and local decisions for adaptive flow monitoring.

E. Performance Benchmarking

To further demonstrate the effectiveness of INT sampling
rate adjustment in P4InfoSen-INT based on Algorithm 3,
we introduce anomalies regarding Queue Time, set η in Eq.
(4) as different values to change the bandwidth allocated
for P4InfoSen-INT, and compute the percentage of collected
abnormal data on Queue Time, which can be treated as
monitoring accuracy. We still compare P4InfoSen-INT with
PINT and AINT, and also consider the scheme of adjusting
INT sampling rate based on peak bandwidth usage [31, 45].

The results on monitoring accuracy and bandwidth over-
heads are shown in Figs. 17 and 18, respectively. In Fig.
17, we can see that the monitoring accuracy increases with
the bandwidth allocated to INT, and P4InfoSen-INT achieves
higher monitoring accuracy than PINT and AINT. This is
because P4InfoSen-INT adjusts its telemetry data collection
scheme adaptively according to the information contents of
collected data values, and thus can balance the tradeoff be-
tween monitoring accuracy and bandwidth overheads the best.

13

(a) Adjusting sampling rate based on Algorithm 3

(b) Adjusting sampling rate based on peak bandwidth

Fig. 17. Results on monitoring accuracy.

Meanwhile, compared with adjusting INT sampling rate based
on peak bandwidth usage, the method based on Algorithm
3 provides higher monitoring accuracy. As Algorithm 3 can
use more available bandwidth for INT without exceeding the
capacity allocated to a monitored flow, the method based on
it provides more bandwidth overheads in Fig. 18.

We average the sampling rates of P4InfoSen-INT in each
second and show the results in Fig. 19, when different INT
sampling adjustment schemes are used. We can see that
compared with that from the method based on Algorithm 3,
the sampling rate adjusted based on peak bandwidth usage is
much smaller and change less frequently, which explains why
its monitoring accuracy is smaller in Fig. 17(b). We also show
the bandwidth usage on the link between switches c and d
when P4InfoSen-INT adjusts the INT sampling rate based on
the two schemes with η = 0.05 in Fig. 20. Compared with the
scheme that adjusts the sampling rate based on peak bandwidth
usage, the method based on Algorithm 3 does consume more
bandwidth overheads, but it does not make the total bandwidth
usage exceed the allocated capacity. Hence, Algorithm 3 can
adjust the INT sampling rate to achieve better monitoring
accuracy without violating the bandwidth constraint.

Finally, we conduct experiments to further verify the ef-
fectiveness of TEM algorithm. Specifically, we first generate
different numbers of monitored flows to get the original entries
for them in PMT without TM or TEM, then apply TM
algorithm to get the entries in MPMT, and finally use TEM
algorithm to further optimize the entries in MPMT. The results
are shown in Fig. 21, where each data point is obtained by
averaging the results from 1, 000 independent experiments.

(a) Adjusting sampling rate based on Algorithm 3

(b) Adjusting sampling rate based on peak bandwidth

Fig. 18. Results on bandwidth overheads.

Fig. 19. Sampling rate of P4InfoSen-INT.

As expected, it takes more table entries to monitor more
flows with P4InfoSen-INT. Compared with the original case
without TM or TEM (the green curve), the one with TM but
without TEM (the blue curve) does increase the number of
entries significantly. However, the table entry increase can be
effectively compensated with TEM, making the results of the
case with TM and TEM (the red curve) similar to those of
the original case. Therefore, the results in Fig. 21 verify that
TEM algorithm can effectively improve the scalability of the
implementation of P4InfoSen-INT in Tofino-based switches.

VII. CONCLUSION

In this paper, we implemented and optimized P4InfoSen-
INT, which is an information-sensitive INT system based
on P4-based hardware switches that are built with Tofino
ASICs, and demonstrated that the proposed system could
leverage agile local decisions on switches to achieve adaptive,

14

Fig. 20. Bandwidth usage of P4InfoSen-INT.

Fig. 21. Table entries in MPMT versus number of monitored flows.

efficient and real-time network monitoring. We first leveraged
MATs in switches to design a PMT for denoting the pri-
orities of different types of telemetry data, which were set
based on the information content of telemetry data. Then,
we designed the operation principle of P4InfoSen-INT such
that it can be realized with the stages in a switch, and also
proposed algorithms to adjust the INT sampling rate and PMTs
adaptively according to the network status. Next, to improve
the scalability of P4InfoSen-INT, we designed the TM and
TEM algorithms, to reduce the stage usage of P4InfoSen-
INT effectively. Our implementation of P4InfoSen-INT was
demonstrated experimentally in a real-world network testbed,
and evaluated against two representative benchmarks, showing
that P4InfoSen-INT was more adaptive to network changes
than the benchmarks, and achieved the best tradeoff between
monitoring accuracy and bandwidth overheads.

ACKNOWLEDGMENTS

This work was supported by the NSFC project 62371432.

APPENDIX A
APPROACH FOR MERGING TABLE ENTRIES IN MPMT
Algorithm 5 explains our proposed approach to merge the

entries in the MPMT to further save the memory resources
in a switch. Line 1 is for the initialization. The for-loop of
Lines 2-6 finds the entries in MPMT EP whose action data
is different, and insert their data and actions in sets P and A,
respectively. Then, we merge the entries whose action data is
the same with Lines 7-32. Lines 8-12 select the entries whose
action data is the same and put them in set E. Then, Lines 13-
30 merge the entries in E based on their actions. Specifically,

if the actions of these entries are to select Queue Time, we
determine whether two entries can be merged based on their
range keys of Bandwidth (Lines 16-21). Otherwise, we merge
the entries based on their range keys of Queue Time (Lines
22-30). If an entry cannot be merged with others, we insert it
in set MEP (Line 31). Finally, Line 33 returns the result.

Algorithm 5: Table entry merging
Input: Entry sets in EP

Output: Optimized entry sets in MEP

1 MEP = ∅, E = ∅, P = ∅, A = ∅, L = 0, g = 2;
2 for each entry epi in EP do
3 if pi /∈ P then
4 inset pi, ai and epi in P , A and MEP , respectively;
5 end
6 end
7 for each {pi, ai} in P and A do
8 for each entry epj in EP do
9 if pj = pi then

10 insert epj in E;
11 end
12 end
13 L = |E|, ep1 = e1;
14 while g ≤ L do
15 ep2 = eg;
16 if ai = 1 then
17 if vu2,k1

= vl2,k2
then

18 vu2,k1
= vu2,k2

;
19 else
20 insert ep1 in MEP , ep1 = ep2;
21 end
22 else
23 if vu1,k1

= vl1,k2
then

24 vu1,k1
= vu1,k2

;
25 else
26 insert ep1 in MEP , ep1 = ep2;
27 end
28 end
29 g = g + 1;
30 end
31 insert ep1 in MEP , E = ∅, g = 2;
32 end
33 return entry set MEP ;

APPENDIX B
UPDATING PRMT AND PMT WITH EM ALGORITHM

The analysis in Section V indicates that the problem of
updating PRMT and PMT is essentially to solve the maximum
likelihood estimation (MLE) in Eq. (6) to get Ât. This can be
done by leveraging the EM algorithm [47] that can find the M-
LE of a probabilistic model with hidden variables. Specifically,
EM algorithm obtains the maximum of an objective function
by increasing its lower bound with an iterative approach
that consists of two major steps, i.e., the expectation and
maximization steps. The expectation step first estimates the
distribution of hidden variables based on the sampled telemetry
data X , and then calculates the expectation of the aforemen-
tioned lower bound accordingly. Next, the maximization step
increases the lower bound and recalculates the corresponding
parameters. At the beginning, At is initialized as

αt
i,n(0) = θti,n, (9)

15

Algorithm 6: Procedure of updating PRMT and PMT
Input: Current PRMT, matrix set Vm, INT packets in an

update cycle N3, maximum iterations N4.
1 t = 1, j = 0, Vm

1 = Vm
2 = Vm

3 = Vm
4 = 0;

2 while receive an INT packet of monitored flow fm do
3 j = j + 1;
4 update the j-th rows of Vm

1 , Vm
2 , Vm

3 , and Vm
4 ;

5 if j = N3 then
6 for each type of telemetry data do
7 initialize At with Eq. (9);
8 for each k ∈ [1, N4] do
9 perform expectation step with Eq. (13);

10 perform maximization step with Eq. (17);
11 end
12 update PRMT with Eq. (18);
13 end
14 update corresponding PMT based on new PRMT;
15 j = 0, t = t+ 1;
16 end
17 end

where θti,n denotes the value of θi,n at the beginning of the
current (i.e., the t-th) update cycle.

As EM algorithm ensures that the lower bound of likelihood
function L(At) will increase after each iteration, it eventually
converges to the maximum value [47]. We denote the At in the
k-th iteration as At(k) and find the lower bound of L(At(k))
according to the Jensen’s inequality [51] as

L
(
At(k)

)
=

N3∑
j=1

log

∑
zj

P
(
xj , zj | At(k)

)
=

N3∑
j=1

log

∑
zj

[
Q (zj) ·

P
(
xj , zj | At(k)

)
Q (zj)

]
>

N3∑
j=1

∑
zj

{
Q (zj) · log

[
P
(
xj , zj | At(k)

)
Q (zj)

]}
,

(10)
where Q (zj) is the posterior distribution of zj that satisfies

Q (zj) = P
(
zj | xj ,At(k − 1)

)
. (11)

Since Q (zj) is independent of At(k), we can ignore the parts
in the right side of Eq. (10) that are unrelated to At(k) and
get the lower bound B(At(k)) as

B(At(k)) =

N3∑
j=1

∑
zj

{
Q (zj) · log

[
P
(
xj , zj | At(k)

)]}
. (12)

Then, in each iteration, EM algorithm works as follows.
In the expectation step, the DA calculates the distribution of
hidden variables. We denote the probability of the i-th type of
telemetry data that matches to value/range ri,n based on the
data in the j-th INT packet as µi

j,n (i.e., µi
j,n = Q(zi,j = n)).

Hence, the probability distribution of Q(zi,j) can be denoted
as {µi

j,1, · · · , µi
j,Mi
}. In the k-th iteration, µi

j,n is obtained as

µi
j,n(k) =

Vm
i,t(j, n) · αt

i,n(k − 1)
Mi∑

n′=1

[
Vm

i,t (j, n′) · αt
i,n′(k − 1)

] , (13)

where Vm
i,t represents Vm

i at the t-th update cycle. In the max-
imization step, we find the At(k) that maximizes B(At(k)).

The principle of P4InfoSen-INT suggests that the scheme of
telemetry data collection is fixed. Then, for any hidden variable
distribution zj, we can get its unique data collection scheme
and know whether there is a conflict between zj and xj , i.e.,

P
(
xj , zj | At(k)

)
=

{
0, Q(zj) = 0,

P
(
zj | At(k)

)
, otherwise.

(14)

Therefore, Eq. (12) can be converted into

B(At(k)) =

N3∑
j=1

∑
zj

{
Q (zj) · log

[
P
(
zj | At(k)

)]}
=

N3∑
j=1

{
M1∑

n1=1

. . .

M4∑
n4=1

[
4∏

i=1

µi
j,ni

(k) · log

(
4∏

i=1

αt
i,ni

(k)

)]}
,

(15)
where we have

N3∑
j=1

{
M1∑

n1=1

· · ·
M4∑

n4=1

[
4∏

i=1

µi
j,ni

(k)

]}
= N3,

M1∑
n1=1

· · ·
M4∑

n4=1

[
4∏

i=1

αt
i,ni

(k)

]
= 1.

(16)

Then, it can be easily verified that when B(At(k)) reaches its
maximum, the value of αt

i,n(k) is

αt
i,n(k) =

N3∑
j=1

µi
j,n(k)

N3
, (17)

which is the update equation of the maximization step.
The two steps are repeated for N4 iterations. Then, we get

the probability distribution of each type of telemetry data in
the current (the t-th) update cycle, and update the PRMT as

θt+1
i,n =

t− 1

t
· θti,n +

1

t
· αt

i,n(k), (18)

where θti,n is the distribution estimated in previous t−1 cycles.
The procedure of updating PMT and PRMT is shown in

Algorithm 6. We update PRMT and the corresponding PMT
when the DA have received and processed all the INT packets
in an update cycle (Lines 2-17). Line 4 updates the j-th rows
of Vm with the procedure in Fig. 11. If an INT packet is the
last one in the current cycle, Lines 6-13 use EM algorithm to
update the PRMT, and Line 14 updates the priorities in the
corresponding PMT based on the new PRMT. With Algorithm
6, the information content updater in each DA updates PRMTs
to the controller, enabling the P4InfoSen-INT system to adapt
to dynamic network changes and optimize the tradeoff between
bandwidth overheads and monitoring accuracy accordingly.

REFERENCES

[1] Cisco Annual Internet Report (2018-2023). [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-papper-c11-741490.html.

[2] P. Lu et al., “Highly efficient data migration and backup for Big Data
applications in elastic optical inter-data-center networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[4] V. Dukic et al., “Beyond the mega-data center: Networking multi-data
center regions,” in Proc. of ACM SIGCOMM 2020, pp. 765–781, Aug.
2020.

16

[5] A. Matencio-Escolar, Q. Wang, and J. Alcaraz Calero, “S-
liceNetVSwitch: Definition, design and implementation of 5G multi-
tenant network slicing in software data paths,” IEEE Trans. Netw. Serv.
Manag., vol. 17, pp. 2212–2225, Oct. 2020.

[6] R. Gour, G. Ishigaki, J. Kong, and J. Jue, “Availability-guaranteed slice
composition for service function chains in 5G transport networks,” J.
Opt. Commun. Netw., vol. 13, pp. 14–24, Jan. 2021.

[7] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[8] S. Li et al., “Improving SDN scalability with protocol-oblivious source
routing: A system-level study,” IEEE Trans. Netw. Serv. Manag., vol. 15,
pp. 275–288, Mar. 2018.

[9] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[10] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[11] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[12] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,” J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[13] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[14] Z. Xu and Z. Zhu, “On establishing and task scheduling of data-oriented
vNF-SCs in an optical DCI,” J. Opt. Commun. Netw., vol. 14, pp. 89–99,
Mar. 2022.

[15] R. Govindan et al., “Evolve or die: High-availability design principles
drawn from Google’s network infrastructure,” in Proc. of ACM SIG-
COMM 2016, pp. 58–72, Aug. 2016.

[16] Z. Pan et al., “Advanced optical-label routing system supporting mul-
ticast, optical TTL, and multimedia applications,” J. Lightw. Technol.,
vol. 23, pp. 3270–3281, Oct. 2005.

[17] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[18] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[19] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP),” RFC 1157, May 1990. [Online].
Available: https://tools.ietf.org/html/rfc1157.

[20] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Sept. 2001. [Online]. Available: https://tools.ietf.org/html/rfc3176.

[21] B. Claise, “Cisco systems NetFlow services export version 9,” RFC
3954, Oct. 2004. [Online]. Available: https://tools.ietf.org/html/rfc3954.

[22] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[23] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[24] INT dataplane specification. [Online]. Available: https://github.com/
p4lang/p4-applications/blob/master/docs/INT v2 1.pdf.

[25] C. Kim et al., “In-band network telemetry via programmable data-
planes,” in Proc. of ACM SIGCOMM 2015, pp. 1–2, Aug. 2015.

[26] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, Jun. 2019.

[27] S. Tang et al., “Sel-INT: A runtime-programmable selective in-band
network telemetry system,” IEEE Trans. Netw. Serv. Manag., vol. 17,
pp. 708–721, Jun. 2020.

[28] Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry for
overhead reduction,” in Proc. of CloudNet 2018, pp. 1–3, Oct. 2018.

[29] S. Tang, J. Kong, B. Niu, and Z. Zhu, “Programmable multilayer INT:
An enabler for AI-assisted network automation,” IEEE Commun. Mag.,
vol. 58, pp. 26–32, Jan. 2020.

[30] B. Basat et al., “PINT: Probabilistic in-band network telemetry,” in Proc.
of ACM SIGCOMM 2020, pp. 662–680, Aug. 2020.

[31] Z. Xu, S. Tang, and Z. Zhu, “Entropy-driven adaptive INT and its
applications in network automation of IP-over-EONs,” IEEE J. Sel. Top.
Quantum Electron., vol. 28, pp. 1–13, Mar. 2022.

[32] Intel Tofino 2. [Online]. Available: https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch/
tofino-2-series.html.

[33] T. Pan et al., “Sailfish: Accelerating cloud-scale multi-tenant multi-
service gateways with programmable switches,” in Proc. of ACM SIG-
COMM 2021, pp. 194–206, Aug. 2021.

[34] C. Zhang et al., “HyperV: A high performance hypervisor for virtual-
ization of the programmable data plane,” in Proc. of ICCCN 2017, pp.
1–9, Sept. 2017.

[35] P. Zheng, T. Benson, and C. Hu, “P4Visor: Lightweight virtualization
and composition primitives for building and testing modular programs,”
in Proc. of ACM CoNEXT 2018, pp. 98–111, Dec. 2018.

[36] A. Sgambelluri et al., “Exploiting telemetry in multi-layer networks,” in
Proc. of ICTON 2020, pp. 1–4, Jul. 2020.

[37] M. Anand, R. Subrahmaniam, and R. Valiveti, “POINT: An intent-driven
framework for integrated packet-optical in-band network telemetry,” in
Proc. of ICC 2018, pp. 1–6, May 2018.

[38] 100G in-band network telemetry with Netcope P4. [On-
line]. Available: https://www.netcope.com/Netcope/media/content/
100G-In-band-Network-Telemetry-With-Netcope-P4.pdf.

[39] G. Simsek, D. Ergenc, and E. Onur, “Efficient network monitoring via
in-band telemetry,” in Proc. of DRCN 2021, pp. 1–6, Apr. 2021.

[40] A. Castro et al., “Near-optimal probing planning for in-band network
telemetry,” IEEE Commun. Lett., vol. 25, pp. 1630–1634, May 2021.

[41] J. Vestin et al., “Programmable event detection for in-band network
telemetry,” in Proc. of CloudNet 2019, pp. 1–6, Nov. 2019.

[42] E. Song et al., “INT-filter: Mitigating data collection overhead for high-
resolution in-band network telemetry,” in Proc. of GLOBECOM 2020,
pp. 1–6, Dec. 2020.

[43] S. Bhattacharyya, C. Diot, and J. Jetcheva, “Pop-level and access-link-
level traffic dynamics in a Tier-1 POP,” in Proc. of ACM SIGCOMM
IMW 2001, pp. 39–53, Nov. 2001.

[44] S. Tang et al., “Self-adaptive network monitoring in IP-over-EONs:
When multilayer telemetry is flexible and driven by data analytics,” in
Proc. of OFC 2021, pp. 1–3, Jun. 2021.

[45] S. Tang, S. Zhao, X. Pan, and Z. Zhu, “How to use in-band network
telemetry wisely: Network-wise orchestration of Sel-INT,” IEEE/ACM
Trans. Netw., vol. 31, pp. 421–435, Jul. 2023.

[46] P4InfoSen-INT. [Online]. Available: https://github.com/
USTC-INFINITELAB/P4InfoSen-INT.

[47] C. Do and S. Batzoglou, “What is the expectation maximization algo-
rithm,” Nat. Biotechnol., vol. 26, pp. 897–899, Aug. 2008.

[48] pktgen-DPDK. [Online]. Available: https://git.dpdk.org/apps/
pktgen-dpdk/.

[49] S. Liu and Z. Zhu, “Generating data sets to emulate dynamic
traffic in a backbone IP over optical network,” Tech. Rep., 2019.
[Online]. Available: https://github.com/lsq93325/Traffic-creation/blob/
master/README.md?tdsourcetag=s pctim aiomsg.

[50] P4Runtime specification. [Online]. Available: https://p4.org/p4-spec/
p4runtime/main/P4Runtime-Spec.html.

[51] D. Mitrinovic, E. Barnes, D. Marsh, and J. Radok, Elementary Inequal-
ities. Noordhoff Groningen, 1964.

