
1

On the TPE Design to Efficiently Accelerate Hitless
Reconfiguration of OCS-based DCNs

Qian Lv, Yuxiao Zhang, Shuoning Zhang, Ruoxing Li, Ke Meng, Bowen Zhang, Fuguang Huang,
Xiaoliang Chen, and Zuqing Zhu, Fellow, IEEE

Abstract—Nowadays, the performance of data-center networks
(DCNs) has become crucial for advancing large-scale computing
applications. Hence, to improve the throughput, energy-efficiency
and latency of DCNs, people are trying to replace the electrical
packet switching (EPS) based spine switches with optical circuit
switching (OCS) based ones. In an OCS-based DCN, topology
engineering (TPE) is the key operation to dynamically reconfigure
its inter-pod topology for accommodating traffic with optimized
resource utilization. TPE consists of two highly-correlated steps,
i.e., optimizing the target physical inter-pod topology of the DCN
based on a traffic matrix, and planning the procedure of OCS
reconfiguration such that hitless transition can be achieved. In
this paper, we study how to optimize the two steps jointly to
efficiently accelerate the hitless reconfiguration of an OCS-based
DCN. We formulate a mixed linear programming model (MILP)
to solve the joint optimization exactly. Then, to solve the problem
time-efficiently, we propose an approach that optimizes TPE
design greedily according to various metrics to minimize the
number of stages required in hitless reconfiguration for TPE.
Extensive simulations verify the effectiveness of our proposals
and demonstrate their benefits over existing benchmark.

Index Terms—Optical circuit switching, Data-center networks
(DCNs), Topology engineering, Hitless DCN reconfiguration.

I. INTRODUCTION

OVER the past decade, the performance of data-centers
(DCs) played a pivotal role in advancing the state of the

art of large-scale computing applications [1, 2]. To address
the ever-increasing computing and communication demands of
these applications [3], data-center networks (DCNs) have been
updated rapidly with electrical packet switching (EPS) tech-
niques. Specifically, in these EPS-based DCNs, data is usually
transferred between racks/pods through a hierarchical network
whose topology is fixed and was planned according to peak
traffic volumes (i.e., the worst-case scenario). However, this
limits the adaptivity and average resource utilization of DCNs
[4], and moreover, EPS introduces high power consumption
and long processing latency [5, 6]. As highly dynamic and
skewed inter-rack/pod traffic has gradually dominated inter-
rack/pod traffic in DCNs in recent years [7], more flexible
and efficient DCN architectures are needed to meet the diverse
topology/connectivity requirements [8, 9].

Compared with EPS paradigms, DCNs based on optical
circuit switching (OCS) [10–15] can offer larger throughput,

Q. Lv, Y. Zhang, S. Zhang, R. Li, X. Chen, and Z. Zhu are with the
School of Information Science and Technology, University of Science and
Technology of China, Hefei, Anhui 230027, China (email: xlichen@ieee.org,
zqzhu@ieee.org).

K. Meng, B. Zhang, and F. Huang are with Huawei Institute of Nanjing,
Nanjing, Jiangsu 210012, China.

Manuscript received on April 5, 2024.

higher energy efficiency, and shorter data transfer latency
potentially [4]. Furthermore, as an OCS-based DCN allows
for dynamic reconfiguring its inter-rack/pod topology with
topology engineering (TPE) [8], it can accommodate dynamic
and skewed traffic demands better and effectively improve
average resource usage in both the oblivious and traffic-aware
manner [16]. Therefore, many OCS-based DCN architectures
[7, 9, 17–20] have been proposed to explore the benefits of
TPE. For instance, Fig. 1 illustrates the OCS-based DCN
architecture developed by Google [7], which was evolved from
the leaf-spine Clos architecture [21]. As shown in Fig. 1(a),
the OCS-based DCN replaces the spine layer in Clos with a
reconfigurable OCS layer (ROL), which directly interconnects
the pods with OCS-based switches (e.g., the micro-electro-
mechanical systems (MEMS) based optical switches) to enable
fast, reliable and energy-efficient inter-pod communications.
The OCS-based switches in the ROL are divided into several
groups (e.g., OCS’ 1 and 2 in Fig. 1(a)), and each pod connects
to all the OCS groups for ensuring service availability during
switch failures. By abstracting the ROL, we can get the logical
inter-pod topology in Fig. 1(b). Then, by reconfiguring the
OCS-based switches, TPE can rewire the inter-pod connections
in the logical topology to adapt to various traffic matrices.

Pod 1 Pod 2 Pod 3 ······

1-hop Path between Pods 1 and 3

Inter-Pod Connections

2-hop Path between Pods 1 and 3

(b)

OCS 2OCS 1
OCS 1 OCS 2

Pod 1 Pod 2 Pod 3

······

······

OCS 1 OCS 2 ······

ROL

(a)

Fig. 1. Example on OCS-based DCN in leaf-spine, where the physical and
logical inter-pod topologies are in (a) and (b), respectively.

Although TPE effectively improves the adaptivity of OCS-
based DCNs, it can hardly be done in the hitless manner that
does not induce noticeable service interruptions, due to the
reconfiguration latency of OCS in milliseconds [8, 9]. This
drawback makes it challenging for OCS-based DCNs to keep
up with the rapid development of dynamic large-scale comput-
ing applications [22]. Therefore, it is relevant and necessary to
optimize the design of TPE to facilitate hitless reconfiguration
of OCS-based DCNs and make it support fine-grained traffic
engineering (TE) better [8]. Specifically, a well-designed TPE
scheme should consider the future (predicted/estimated) traffic
matrix and the current physical inter-pod topology of an OCS-

2

based DCN as inputs, to first optimize the target physical
inter-pod topology according to the future traffic matrix and
then plan the procedure of ROL reconfiguration to achieve
hitless transition to it. These two steps of TPE are highly-
correlated and thus should be optimized jointly, because the
target physical inter-pod topology defines the complexity of
the subsequent ROL reconfiguration, while the constraints
associated with ROL reconfiguration affect the design of the
target physical inter-pod topology. Nevertheless, most of the
existing studies on TPE only tackled them separately [8, 23,
24], and to the best of our knowledge, how to optimize the
two steps jointly has not been fully explored in the literature.

In this work, we study how to optimize the two steps of
TPE jointly to efficiently accelerate the hitless reconfiguration
of an OCS-based DCN. We assume that the OCS-based DCN
is in the leaf-spine architecture shown in Fig. 1(a), due to its
popularity in the industry. Then, in the first step, we need to get
a target inter-pod topology that can realize or approximate the
target logical inter-pod topology (obtained based on the future
traffic matrix). This problem, although looks straightforward,
is pretty challenging and complex, and we prove its NP-
hardness. Next, we formulate a mixed linear programming
(MILP) model to tackle the joint optimization that covers the
two steps of TPE. To improve the time efficiency of problem
solving, we propose a time-efficient heuristic, which can solve
the joint optimization greedily according to various metrics.
Extensive simulations verify the effectiveness of our proposals
and demonstrate the necessity of the joint optimization.

The rest of this paper is organized as follows. Section II
briefly surveys the related work. In Section III, we present
the problem description and formulate the MILP model. We
propose the heuristic for TPE design in Section IV, and
the simulations for performance evaluation are discussed in
Section V. Finally, Section VI summarizes the paper.

II. RELATED WORK

Since the late 2000s, researchers have considered the at-
tempt of introducing OCS into DCNs to explore its benefits
on throughput, latency, energy-efficiency and flexibility, and
proposed numerous optics-related DCN architectures [17, 18,
25–30]. In order to explore the reconfigurability of these OCS-
based DCN architectures to adapt to dynamic and skewed
traffic matrices, people have designed a few DCN manage-
ment approaches to improve the performance on throughput,
latency, and resource utilization [20, 23, 24, 31–34]. The
DCN management approaches optimized TPE or/and TE of
OCS-based DCNs, where TPE determines the physical inter-
rack/pod topology of an OCS-based DCN and TE plans the
flow routing through the physical inter-rack/pod topology [8].

Between TPE and TE, TPE is more important to an OCS-
based DCN, because its result defines the optimization space
of TE and decides whether and how fast hitless reconfiguration
can be accomplished. Therefore, a few existing studies have
addressed the TPE of various OCS-based DCNs [9, 23, 24, 34,
35]. However, these studies only considered the first step of
TPE, i.e., getting the target physical inter-rack/pod topology
of an OCS-based DCN based on a predicted/estimated traffic

matrix. Note that, the second step of TPE (i.e., planning the
procedure of DCN reconfiguration to the target physical topol-
ogy) should not be ignored, because it determines whether
hitless transition can be achieved quickly, which is essential
to ensure the quality-of-service (QoS) of many emerging large-
scale computing applications [2]. Hence, researchers have
also tackled the second step of TPE of different OCS-based
DCNs. For example, Zhao et al. [36] proposed a progressive
topology reconfiguration scheme for OSA [9], to guarantee
the QoS of delay-sensitive flows and reduce the packet loss
during reconfiguration, and the authors of [37] optimized
the reconfiguration procedure of OCS-based DCNs in Hyper-
FleX-LION [28]. Nevertheless, all these existing studies on
TPE addressed its two steps separately or subsequently, which,
as we have explained before, can lead to sub-optimal results.

To the best of our knowledge, how to optimize the two
steps of TPE jointly to efficiently accelerate the hitless recon-
figuration of an OCS-based DCN has not been addressed in
the literature, especially for the leaf-spine architecture that has
attracted intensive interests from the industry [7, 8, 19].

III. TPE TO ACCELERATE HITLESS OCS-BASED DCN
RECONFIGURATION

In this section, we first describe the problem of designing
TPE to accelerate hitless OCS-based DCN reconfiguration,
then prove that its first step is NP-hard, and finally formulate
an MILP model to solve it optimally.

A. Problem Description

We consider an OCS-based DCN in the leaf-spine archi-
tecture shown in Fig. 1(a), where V pods are directly inter-
connected by the ROL that is built with OCS-based switches
in T groups, each of which includes K switches. Each pod
v ∈ V possesses Lv,t,k pair(s) of physical connections to
the k-th switch in the t-th group. Here, each pair of physical
connections are for duplex communications between two ports
respectively on a pod and an OCS-based switch, and thus the
connections can be abstracted as an undirected connection.

The first step of TPE (i.e., Step 1 in the following discus-
sions) is to optimize the target physical inter-pod topology. It
can be further divided into two sub-steps:

1) Calculating target logical inter-pod topology based on the
future (predicted/estimated) matrix of traffic among pods,

2) Optimizing target physical inter-pod topology to realize
or approximate the obtained target logical inter-pod topol-
ogy, such that the subsequent ROL reconfiguration can be
accelerated with the smallest number of stages.

Note that, the current and target physical inter-pod topologies
align with the current and future traffic matrices, respectively,
and thus, the transition between them is hitless when the
common part of the two traffic matrices is unaffected during
the process. The first sub-step can be easily solved with matrix
decomposition and matching [38], and thus its result solely
depends on the future traffic matrix. Therefore, to optimize
the two steps of TPE jointly, we can first tackle the first sub-
step of Step 1 independently and then optimize the second
sub-step of Step 1 and Step 2 jointly. Then, without lose of

3

generality, we can assume that the result of the first sub-step
of Step 1 (i.e., the target logical inter-pod topology) is known
as the input of the joint optimization considered in this work.

We denote the initial and target logical topologies with
two sets of non-negative integer parameters {Gu,v : u, v ∈
V, u 6= v} and {G′u,v : u, v ∈ V, u 6= v}, where Gu,v

and G′u,v indicate the numbers of connections between pods
v and u in the initial and target logical topologies, respec-
tively. Similarly, the initial physical topology can also be
represented with a set of non-negative integer parameters
{St,k

u,v : u, v ∈ V, u 6= v, t ∈ [1, T], k ∈ [1,K]}, each of
which tells the number of connections between pods u and
v through the k-th switch in the t-th group. The common
part of current and future traffic matrices is denoted as R,
where each flow r(sr, dr, br) ∈ R is defined by its source
pod sr, destination pod dr, and bandwidth demand br. Then,
the second sub-step of Step 1 is to optimize the target physical
topology based on {Gu,v}, {G′u,v}, {St,k

u,v}, and R, such that
the hitless reconfiguration to it in Step 2 can be accomplished
progressively with the smallest number of stages. Here, to
ensure hitless reconfiguration, each stage is based on “make-
before-break” and contains two phases:

1) Obtaining an intermediate physical topology toward the
target one, applying TE to drain the traffic on all the con-
nections that will be torn down to realize the intermediate
physical topology, and tearing down the connections.

2) Setting up new connections to realize the intermediate
physical topology, and redistributing traffic with TE.

In order to make sure that the first phase of each stage does
not cause unexpected congestion, we define η as the residual
capacity ratio of the number of connections after the first phase
to that after the second phase in previous stage, for each stage,
and its value should never be less than a preset threshold ηth.

Figs. 2 and 3 provide illustrative examples to explain the
hitless reconfiguration considered in this work. The initial
physical and logical topologies are shown in Figs. 2(a) and
3(a), respectively, where the white lines on the two OCS-
based switch groups in Fig. 2(a) indicate the initial connections
between pods. Here, we assume that there are 2 switch groups,
each of which includes a switch that contains 12 ports, and
each pod connects 3 links to a switch group (the capacity
of each link is 1 unit). There are 4 flows in the OCS-based
DCN, and their sources, destinations and bandwidth demands
are listed in the first column of the table in Fig. 3(f), and
their TE results in the initial physical topology are also listed
in the table. For instance, Flow 1 is between Pods 1 and 3
with a bandwidth demand of 1.5 units, and initially, it is split
over two direct paths, which are through the first switches in
the first and second groups, respectively (i.e., the switches are
respectively denoted as 1(1) and 2(1) in Fig. 3(f)).

Then, we start the hitless reconfiguration with ηth = 65%.
It can be seen that to reconfigure the initial physical topology
in Fig. 2(a) to the target one in Fig. 2(c), we need to rewire 4
and 2 connections in OCS’ 1(1) and 2(1), respectively, where
the rewired connections are marked with colored lines in Fig.
2(c). Due to the constraint of ηth = 65%, we cannot finish
the physical topology reconfiguration in one stage. Therefore,
the intermediate physical topology in Fig. 2(b) is designed,

Pod 1 Pod 2 Pod 3

OCS 1(1)

Pod 4

OCS 2(1)

1(1) 2(1) 1(1) 2(1) 1(1) 2(1) 1(1) 2(1)

Pod 1 Pod 2 Pod 3

OCS 1(1)

Pod 4

OCS 2(1)

1(1) 2(1) 1(1) 2(1) 1(1) 2(1) 1(1) 2(1)

a

b

Pod 1 Pod 2 Pod 3

OCS 1(1)

Pod 4

OCS 2(1)

1(1) 2(1) 1(1) 2(1) 1(1) 2(1) 1(1) 2(1)

c

Fig. 2. Example on reconfiguring the initial physical topology in (a) to the
target one in (c) with two stages, where the intermediate physical topology is
in (b) (the physical topologies in (a)-(c) here correspond to the logic topologies
in Figs. 3(a), 3(c) and 3(e), respectively).

Flow

(- /)

TE Results (/ - ()/)

Initial Stage Stage 1-1 Stage 1-2 Stage 2-1 Stage 2-2

1-3/1.5
1-3/1(1)/0.5;

1-3/2(1)/1.0;

1-3/2(1)/1.0;

1-2-

3/2(1),2(1)/

0.5;

1-3/2(1)/1.0;

1-2-

3/2(1),2(1)/

0.5;

1-2-

3/2(1),2(1)/0.5;

1-4-

3/2(1),1(1)/1.0;

1-2-

3/2(1),2(1)/0.5;

1-4-

3/2(1),1(1)/1.0;

1-2/1.5
1-2/1(1)/1.0;

1-2/2(1)/0.5;

1-2/1(1)/1.0;

1-2/2(1)/0.5;

1-2/1(1)/1.0;

1-2/2(1)/0.5;

1-2/1(1)/1.0;

1-2/2(1)/0.5;

1-2/1(1)/1.0;

1-2/2(1)/0.5;

3-4/2.0
3-4/1(1)/1.0;

3-4/2(1)/1.0;

3-4/1(1)/1.0;

3-4/2(1)/1.0;

3-4/1(1)/1.0;

3-4/2(1)/1.0;

3-4/1(1)/1.0;

3-4/2(1)/1.0;

3-4/1(1)/1.0;

3-4/2(1)/1.0;

2-4/0.5 2-4/2(1)/0.5; 2-4/2(1)/0.5; 2-4/2(1)/0.5;
2-3-

4/2(1),1(1)/0.5;

2-3-

4/2(1),1(1)/0.5;

1 2

3 4
(a)

1 2

3 4
(b)

1 2

3 4
(c)

1 2

3 4
(d)

1 2

3 4
(e)

(f)

Fig. 3. Continue of hitless reconfiguration example in Fig. 2, (a)-(e) logical
topologies, and (f) TE results.

which only rewires 4 connections in OCS 1(1), and its logical
topology is in Fig. 3(c). The hitless reconfiguration from the
initial physical topology in Fig. 2(a) to the intermediate one in
Fig. 2(b) is accomplished with two phases (Stages 1-1 and 1-
2). Here, the logical topology after Stage 1-1 is shown in Fig.
3(b), where all the connections through the to-be-reconfigured
ports in OCS 1(1) are torn down, and before tearing down
the connections, the traffic on them has been redistributed to
other connections as shown in Fig. 3(f). Similarly, the hitless
reconfiguration from the intermediate physical topology in Fig.
2(b) to the target one in Fig. 2(c) is accomplished with Stages
2-1 and 2-2, whose logic topologies are in Figs. 3(d) and 3(e),
respectively, and their TE results are listed in Fig. 3(f).

4

B. Optimization of Target Physical Inter-pod Topology

As explained above, the first sub-step of Step 1 needs to
obtain and optimize the target physical inter-pod topology to
realize or approximate the target logical inter-pod topology.
Therefore, we first need to determine whether for an arbitrary
target logical topology, there exists a target physical topology
to realize it. The decision problem can be described as follows.

Parameters:
• V : the set of pods in the OCS-based DCN.
• T : the number of switch groups in ROL of the DCN.
• K: the number of OCS-based switches in each group.
• Lu,t,k: the number of physical links that pod u ∈ V uses

to connect to the k-th switch of the t-th group in ROL.
• G′u,v: the number of connections between pods u and v

in the target logical topology (u, v ∈ V).
Decision Variables:
• Dk,t

u,v: the integer variable that indicates the number of
connections between pods u and v through the k-th
switch of the t-th group in the target physical topology.

Constraints:

G′u,v ≤
T∑

t=1

K∑
k=1

Dk,t
u,v, ∀u, v ∈ V. (1)

Eq. (1) ensures that the target physical topology satisfies the
target logical topology defined by {G′u,v}.{

Dk,t
u,v = Dk,t

v,u, {u, v : u, v ∈ V, u 6= v},
Dk,t

u,u = 0, ∀u ∈ V,
∀t ∈ [1, T], k ∈ [1,K].

(2)
Eq. (2) ensures that the target physical topology is correctly
determined to satisfy symmetry.∑

u

Dk,t
u,v ≤ Lv,t,k, ∀v, t, k. (3)

Eq. (3) ensures that the target physical topology does not
require more ports than each pod can offer.

Theorem 1. The decision problem of whether an arbitrary
logical inter-pod topology can be realized by a physical inter-
pod topology is NP-complete.

Proof: We prove that the decision problem is NP-
complete with the restriction method [39], i.e., reducing it to a
special case that is the general case of a known NP-complete
problem. Specifically, we apply the following restrictions:
• We set T = 1, i.e., only one switch group is considered.
• We set Lu,t,k = 1, i.e., pod u ∈ V uses one physical link

to connect to the k-th switch of the t-th group in ROL.
• We consider G′u,v ∈ {0, 1}, i.e., there is 0 or 1 connection

between pods u and v in the target logical topology.
As we have T = 1, Dk,t

u,v can be denoted as Dk
u,v , and then,

Eqs. (1)-(3) are transformed as

G′u,v ≤
K∑

k=1

Dk
u,v, ∀u, v ∈ V, (4)

{
Dk

u,v = Dk
v,u, {u, v : u, v ∈ V, u 6= v},

Dk
u,u = 0, ∀u ∈ V,

∀k ∈ [1,K], (5)

∑
u

Dk
u,v ≤ 1, ∀v, k. (6)

We know Dk
u,v ∈ {0, 1} based on Eq. (6). As Dk

u,v satisfies
Eq. (4) and we have G′u,v ∈ {0, 1}, Dk

u,v satisfies Eq. (7) in
certain cases of u, v ∈ V according to Eq. (4).

K∑
k=1

Dk
u,v ≥ 1, ∀u, v ∈ V. (7)

Then, if we treat K as the number of colors and each connec-
tion between two nodes u and v as a virtual node, and connect
two virtual nodes with a virtual link if the connections that
they represent share same end-node(s), Eqs. (5)-(7) describe
a general case of the multi-coloring problem. Specifically, the
multi-coloring problem needs to determine when each virtual
node needs to be colored with at least one color (Eq. (7)) and
two connected virtual nodes have to be colored differently
(Eq. (5)), whether we can color all the virtual nodes with
no more than K colors? Therefore, we polynomially reduce
the decision problem defined by Eqs. (4)-(7) to the multi-
coloring problem. Obviously, if we can answer the multi-
coloring problem (

∑
k

Dk
u,v ≥ 1) in polynomial time, we

should be able to answer the classical graph coloring problem
(GCP) (

∑
k

Dk
u,v = 1) in polynomial time. This, however,

is contradictive to the fact that the classical GCP is NP-
complete [40]. Hence, we prove that the decision problem of
whether an arbitrary logical inter-pod topology can be realized
by a physical inter-pod topology is NP-complete.

We can easily provide an example to show that it is
infeasible to find a physical inter-pod topology to realize a
logical inter-pod topology. Specifically, we set Lu,t,k = 3,
T = 2 and K = 1, and then it is not possible to obtain a target
physical topology to realize the following logical topology.

G′u,v =

0 3 3
3 0 3
3 3 0


This is because we can only map G′u,v to three or more OCS-
based switches, such as D1,1

u,v , D2,1
u,v and D3,1

u,v in the following.

D1,1
u,v =

0 2 1
2 0 1
1 1 0



D2,1
u,v =

0 1 2
1 0 1
2 1 0



D3,1
u,v =

0 0 0
0 0 1
0 1 0


Note that, as the decision problem for the second sub-step

of Step 1 of TPE design is NP-complete, we can easily
verify that the overall problem of TPE design is NP-hard.
Consequently, in the following analysis, when determining the
target physical inter-pod topology, we only try to optimize it
to realize or approximate the target logical inter-pod topology.

5

C. MILP Model

We formulate an MILP model to describe the joint opti-
mization for TPE design as follows.

Objective:
The joint optimization is to design TPE for an OCS-based

DCN such that the TPE-induced hitless reconfiguration can be
finished with the smallest number of stages

Minimize S, (8)

where S is the number of stages required in Step 2.
Parameters:

• V : the set of pods in the OCS-based DCN.
• T : the number of switch groups in ROL of the DCN.
• K: the number of OCS-based switches in each group.
• R: the matrix for the common inter-pod traffic between

the current and future traffic matrices, where each flow r
is denoted as r(sr, dr, br).

• Lu,t,k: the number of physical links that pod u ∈ V uses
to connect to the k-th switch of the t-th group in ROL.

• G′u,v: the number of connections between pods u and v
in the target logical topology (u, v ∈ V).

• Bu: the capacity of a switch port on a pod u ∈ V .
• Sk,t

u,v: the number of connections between pods u and v
through the k-th switch of the t-th group in the initial
physical topology (u, v ∈ V).

• ηth: the threshold on residual capacity ratio of each stage.
• N : a large positive integer.

Decision Variables:

• Dk,t
u,v: the integer variable that indicates the number of

connections between pods u and v through the k-th
switch of the t-th group in the target physical topology.

• Mk,t,i
u,v : the integer variable for the number of connections

between pods u and v through the k-th switch of the t-th
group after the first phase of stage i.

• Ck,t,i
u,v : the integer variable for the number of connections

between pods u and v through the k-th switch of the t-th
group after the second phase of stage i.

• zr,iu,v: the integer variable that indicates the bandwidth
occupied by flow r ∈ R on connection(s) between pods
u and v after the first phase of stage i.

• fr,iu,v: the integer variable that indicates the bandwidth
occupied by flow r ∈ R on connection(s) between pods
u and v after the second phase of stage i.

• hr,iu,v: the boolean variable that equals 1 if the connections
between pods u and v will be used to route the flow r
after the first phase of stage i.

• h′r,iu,v: the boolean variable that equals 1 if the connections
between pods u and v will be used to route the flow r
after the second phase of stage i.

• S: the integer variable that indicates the number of stages
required to finish the TPE-induced hitless reconfiguration.

• si: the boolean variable that equals 1 if stage i exists in
the TPE-induced hitless reconfiguration, and 0 otherwise.

• φk,tu,v: the auxiliary integer variables for linearization.
• ϕk,t

u,v: the auxiliary boolean variables for linearization.

Constraints:

G′u,v ≤
T∑

t=1

K∑
k=1

Dk,t
u,v, ∀u, v ∈ V. (9)

Eq. (9) ensures that the obtained target physical topology
satisfies the target logical topology defined by {G′u,v}.{

Ck,t,i
u,v = Ck,t,i

v,u , {u, v : u, v ∈ V, u 6= v},
Ck,t,i

u,u = 0, ∀u ∈ V,
∀t ∈ [1, T], k ∈ [1,K], i ∈ [0, N].

(10)

Eq. (10) ensures that the intermediate physical topology in
each stage is correctly determined.{

Ck,t,0
u,v = Sk,t

u,v,

Ck,t,N
u,v = Dk,t

u,v,
∀u, v, t, k. (11)

Eq. (11) ensures that the physical topologies of stages 0 and N
are just the initial and target physical topologies, respectively.∑

u

Ck,t,i
u,v ≤ Lv,t,k, ∀v, t, k, i. (12)

Eq. (12) ensures that the physical topology in each stage does
not require more ports than each pod can offer.{

Ck,t,i
u,v ≥Mk,t,i

u,v ,

Ck,t,i−1
u,v ≥Mk,t,i

u,v ,
∀u, v, t, k, i ∈ [1, N]. (13)

Eq. (13) ensures that the relations between variables {Mk,t,i
u,v }

and {Ck,t,i
u,v } are correctly determined.

N∑
i=1

(
Ck,t,i−1

u,v −Mk,t,i
u,v

)
=

1

2

(
φk,t
u,v + Sk,t

u,v −Dk,t
u,v

)
, ∀u, v, t, k,

(14)
N∑
i=1

(
Ck,t,i

u,v −Mk,t,i
u,v

)
=

1

2

(
φk,t
u,v +Dk,t

u,v − Sk,t
u,v

)
, ∀u, v, t, k,

(15)
Dk,t

u,v − Sk,t
u,v ≤ φk,t

u,v,

Sk,t
u,v −Dk,t

u,v ≤ φk,t
u,v,

φk,t
u,v ≤ Dk,t

u,v − Sk,t
u,v + (1− ϕk,t

u,v) ·N,
φk,t
u,v ≤ Sk,t

u,v −Dk,t
u,v + ϕk,t

u,v ·N,

∀u, v, t, k. (16)

Eqs. (14)-(16) ensure that the physical topology change be-
tween adjacent stages is correctly determined, where Eq. (16)
is introduced to linearize

∣∣Dk,t
u,v − Sk,t

u,v

∣∣.
∑
u∈V

∑
v∈V

K∑
k=1

T∑
t=1

Mk,t,i
u,v ≥

∑
u∈V

∑
v∈V

K∑
k=1

T∑
t=1

Ck,t,i−1
u,v · ηth,

∀i ∈ [1, N].

(17)

Eq. (17) ensures that the constraint on residual capacity ratio
is always satisfied in the first phase of each stage.


∑
v∈V

zr,isr,v + zr,iv,dr

2
+ zr,isr,dr

= br,

zr,iv,dr
= zr,isr,v, {v : v 6= sr, dr, v ∈ V },

∀r, i, (18)


∑
v∈V

fr,i
sr,v + fr,i

v,dr

2
+ fr,i

sr,dr
= br,

fr,i
v,dr

= fr,i
sr,v, {v : v 6= sr, dr, v ∈ V },

∀r, i, (19)

6

1 2

3 4

Pod 1 Pod 2 Pod 3

OCS 1(1)

Pod 4

OCS 2(1)

1(1) 2(1) 1(1) 2(1) 1(1) 2(1) 1(1) 2(1)

(b)

(a)

1 2

3 4

1 2

3 4

1 2

3 4
(c)

1 2

3 4

1 2

43

1 2

3 4
{ , } { , }{ , }{ , }

Fig. 4. Examples on (a) getting {∆′u,v} and {∆u,v} based on initial and
target logical topologies, (b) initial physical topology, and (c) decomposing
the initial physical topology in (b) to independent sub-topologies.

∑
r∈R

fr,i
u,v ≤

K∑
k=1

T∑
t=1

Ck,t,i
u,v ·min (Bu, Bv) , ∀u, v, i, (20)

∑
r∈R

zr,iu,v ≤
K∑

k=1

T∑
t=1

Mk,t,i
u,v ·min (Bu, Bv) ∀u, v, i. (21)

Eqs. (18)-(21) ensure that each flow r ∈ R is routed over
available paths in each stage. More specifically, Eqs. (18) and
(19) ensure the flow conservation conditions within 2 hops,
while Eqs. (20) and (21) ensure that the bandwidth usages of
all the flows in each stage satisfy the port capacity constraint.{

Ck,t,i
u,v − Ck,t,i−1

u,v ≤ N · si,
Ck,t,i−1

u,v − Ck,t,i
u,v ≤ N · si,

∀u, v, t, k, i ∈ [1, N]. (22)

S =

N∑
i=1

si, (23)

Eqs. (22)-(23) ensure that the number of required stages S is
correctly determined.

IV. DESIGN OF HEURISTIC ALGORITHM

Although the MILP above can solve the joint optimization
exactly, the problem-solving can be time-consuming or even
intractable due to the NP-hardness of the problem. In this
section, we propose a time-efficient heuristic.

A. Overall Procedure

Given the inherent complexity in solving the problem of
TPE design directly, we first decompose it into two sub-
problems, and then propose time-efficient heuristics to solve
the subproblems in sequence. Specifically, according to our
discussions in Section III-A, our TPE design considers

1) Optimizing target physical topology based on the target
logical topology in consideration of minimizing the re-
quired stages in subsequent hitless reconfiguration (i.e.,
the second sub-step of Step 1),

2) Obtaining a sequence of intermediate physical topologies
to realize the hitless reconfiguration to the target physical
topology with the smallest number of stages (i.e., Step 2),

which correspond to the two subproblems addressed in the fol-
lowing. Different from the existing TPE design approaches that
tackle the subproblems separately, our proposed algorithm tries
to address them jointly, which means that when solving the
first subproblem, we try to select the solution that will benefit
the second subproblem most in the greedy manner. Moreover,
we hope to point out that a well-designed greedy scheme for
solving the first subproblem is not as straightforward as it
seems to be. For example, an intuitive metric to consider when
solving the first subproblem is the number of rewirings needed
to change the initial physical topology to the target one [41].
However, as we will show in the performance evaluation in
Section V, minimizing rewirings might not reduce the required
stages from the second subproblem to the largest extent.

In the rest of this section, we present six algorithms (i.e.,
Algorithms 1-6) to tackle the joint optimization of TPE design.
In particular, Algorithms 1 and 2 describe the procedures for
computing the target physical topology, while Algorithms 3-
5 calculate three metrics that can be exploited by Algorithm
1 to assist in selecting sub-topologies greedily to build the
target physical topology (Line 18 of Algorithm 1). Algorithm
6 is for optimizing the procedure of hitless reconfiguration.
Consequently, different combinations of Algorithms 1, 2, 6
and Algorithms 3-5 lead to different TPE design algorithms,
namely, Adapted-Gemini [8] (Algorithms 1, 2, 6 and Algorithm
3), Min-Rerouting (Algorithms 1, 2, 6 and Algorithm 4), and
Simp-TPChange (Algorithms 1, 2, 6 and Algorithm 5).

B. Algorithm to Obtain Target Physical Topology

1) Main Procedures to Obtain Target Physical Topology:
Algorithm 1 shows the procedure that we propose to solve
the first subproblem to obtain the target physical topology for
TPE. Line 1 compares the initial and target logical topologies
to get the to-be-removed and to-be-added connections, and
puts them in sets {∆′u,v} and {∆u,v}, respectively. Fig. 4(a)
shows an example on how to get {∆′u,v} and {∆u,v} based
on initial and target logical topologies. Then, we decompose
the initial physical topology into independent sub-topologies
{Gk,t}, each of which only uses an OCS-based switch (Line 2).
Fig. 4 also explains the operation in Line 2. Specifically, with
the initial physical topology in Fig. 4(b), we can decompose
it to obtain two independent sub-topologies, each of which
corresponds to an OCS-based switch, as shown in Fig. 4(c).

Next, Lines 3-11 try to directly implement as many to-be-
added connections in ∆u,v as possible. As the connections can
be set up without removing any existing ones, implementing
them helps to reduce the stages required in subsequent hitless
reconfiguration. Line 12 initializes a flag for stopping the
while-loop of Lines 13-24, which updates the sub-topologies
in {Gk,t} iteratively until all the topology changes in {∆′u,v}
and {∆u,v} have been applied or the number of iterations in
Algorithm 2 reaches its maximum (Im). In each iteration, we
build the to-be-removed sub-topology with the connections,
each of which carries the smallest traffic between a pod pair

7

Algorithm 1: Obtaining Target Physical Topology for TPE

Input: {Gu,v}, {G′u,v}, {St,k
u,v}, R and Im.

Output: Target physical topology {Dk,t
u,v}.

1 compare {Gu,v} and {G′u,v} to get to-be-removed and
to-be-added connections to put in {∆′u,v} and {∆u,v};

2 decompose {Sk,t
u,v} into independent sub-topologies

{Gk,t}, each of which corresponds to a switch;
3 sort {∆u,v} in descending order of the number of

to-be-added connections between pod pair u-v;
4 for each sub-topology in {Gk,t} do
5 for each ∆u,v in {∆u,v} in sorted order do
6 add the connections that can be added between u

and v in Gk,t, and update ∆u,v accordingly;
7 if ∆u,v = 0 then
8 remove ∆u,v from {∆u,v};
9 end

10 end
11 end
12 flag = 0;
13 while {∆u,v} 6= ∅ AND flag = 0 do
14 initialize to-be-removed sub-topology {∆∗u,v} = ∅;
15 for each pod pair u-v with ∆′u,v 6= 0 do
16 select one connection between u and v and add it

as ∆∗u,v in {∆∗u,v};
17 end
18 apply a sub-procedure to obtain metric ξk,t, set of

to-be-removed connections Gk,t− , set of to-be-added
connections Gk,t+ , and set of added connections G?k,t+

for each sub-topology Gk,t;
19 if all the sets in {G?k,t+ } are empty then
20 apply Algorithm 2 and set flag = 1;
21 else
22 select the sub-topology Gk,t whose metric ξk,t is

the largest, apply changes in Gk,t− and Gk,t+ to
Gk,t, and update ∆u,v and ∆′u,v;

23 end
24 end
25 get target physical topology {Dk,t

u,v} based on {Gk,t};

(Lines 14-17), apply a sub-procedure to get a metric ξk,t for
each sub-topology Gk,t together with the to-be-removed, to-
be-added and added connections related to it (Line 18). Here,
we consider three scenarios for the sub-procedure in Line 18,
and will discuss them in the next subsection. If there is at
least one sub-topology to which we can add connection(s),
Line 22 selects the sub-topology whose metric is the largest
to implement the corresponding topology changes. Otherwise,
we use Algorithm 2 to gradually reorganize sub-topologies
{Gk,t} to add connections in {∆u,v}. Finally, Line 25 obtains
the target physical topology {Dk,t

u,v} based on {Gk,t}.
Algorithm 2 explains how to reorganize sub-topologies

{Gk,t} if we cannot add a connection to any of them but
{∆u,v} has not become empty yet. The while-loop of Lines
2-19 keeps modify the sub-topologies in {G̃k,t}, which is
initialized as {Gk,t} in Line 1, until the set of to-be-added

Algorithm 2: Sub-procedure of Algorithm 1

1 I = 0, {G̃k,t} = {Gk,t};
2 while {∆u,v} 6= ∅ and I < Im do
3 for each sub-topology in {G̃k,t} do
4 select a connection between each connected pod

pair u-v in the sub-topology to add in {∆−?u,v};
5 end
6 {∆̃u,v} = {∆−?u,v}+ {∆u,v} − {∆′u,v};
7 ind = 1, {G?k,t} = {G̃k,t};
8 while ind ≤ K · T do
9 for each sub-topology in {G?k,t} do

10 solve a max-flow problem to find connections
in {∆̃u,v} that can be added to G?k,t (G?k,t+);

11 apply sub-procedure to update ξk,t and G?k,t− ;
12 end
13 select the sub-topology G?k,t whose metric ξk,t is

the largest (G?k,tmax), apply changes in G?k,t− and
G?k,t+ to G?k,t, and update ∆̃u,v and ∆′u,v;

14 remove sub-topology G?k,tmax from {G?k,t} and
update {G̃k,t} with G?k,tmax;

15 ind = ind+ 1;
16 end
17 update {Gk,t} and {∆u,v} with {G̃k,t} and {∆̃u,v} if

we have |{∆̃u,v}| < |{∆u,v}|;
18 I = I + 1;
19 end
20 return {Gk,t} and {∆u,v};

connections ({∆u,v}) is empty or the iteration limit Im is
reached. Hence, the algorithm will terminate to return the sub-
topologies {Gk,t} with the smallest to-be-added connections.
Specifically, in each iteration, we first mark to remove a
connection between each connected pod pair u-v in each
sub-topology to create the opportunity for sub-topology re-
organization (Lines 3-5). Then, we update the to-be-added
connections in Line 6. The iterations in Lines 8-16 add to-be-
added connections to the sub-topologies in {G̃k,t} sequentially
according to the metric ξk,t of each sub-topology. Specifically,
we try to find the most connections in {∆̃u,v} that can be
added to each sub-topology, by solving a max-flow problem in
Line 10, and then update the metric ξk,t of sub-topology G?k,t
accordingly (Line 11). Then, we choose the sub-topology with
the largest ξk,t to apply changes and update G?k,t, {∆̃u,v} and
{∆′u,v} accordingly in Lines 13-14. Next, we update {Gk,t}
and {∆u,v} with {G̃k,t} and {∆̃u,v}, if the number of to-be-
added connections in {∆̃u,v} is smaller than that of {∆u,v}
(Line 17), and update the number of iterations I (Line 18).

2) Algorithm to Check and Update Sub-topologies: Algo-
rithms 3-5 show the three scenarios that we design for the
sub-procedure in Line 18 of Algorithm 1. First, Algorithm 3
determines the metric of each sub-topology based on the num-
ber of rewirings associated with it [41]. For each sub-topology
Gk,t, we first initialize the related variables in Line 2, where
G̃k,t is introduced to record the hypothetical changes to Gk,t.
Lines 3-6 find the to-be-removed and to-be-added connections

8

for Gk,t, and store them in Gk,t− and Gk,t+ , respectively. Then,
we recheck the sub-topology to add back the connections that
were removed in Line 3 but have no conflict with the newly-
added connections (i.e., their removals are not necessary), and
update Gk,t− accordingly (Line 7). Finally, the metric ξk,t of
sub-topology Gk,t is obtained as the difference between its
to-be-added connections and its to-be-removed ones (Line 8).

Algorithm 3: Scenario for Minimizing Rewirings

1 for each sub-topology in {Gk,t} do
2 G̃k,t = Gk,t, Gk,t− = Gk,t+ = ∅;
3 try to remove as many connections in {∆∗u,v} from

G̃k,tu,v as possible, and add the removed ones in Gk,t− ;
4 for each ∆u,v in {∆u,v} in sorted order do
5 add the connections that can be added between u

and v in G̃k,t, and insert them in Gk,t+ ;
6 end
7 check G̃k,t to add back the connections in {∆∗u,v}

that have no conflict with newly-added connections,
and update Gk,t− accordingly;

8 ξk,t = |Gk,t+ | − |G
k,t
− |;

9 end
10 return {ξk,t}, {Gk,t− }, {G

k,t
+ };

Algorithm 4 explains the scenario that determines the metric
of each sub-topology based on the volume of traffic rerouting
associated with it. It uses a similar procedure of Algorithm
3, except for Lines 8-12, which compute each sub-topology’s
metric based on the number of its to-be-added connections
and sum of bandwidth utilization on its to-be-removed con-
nections.

The last scenario aims to simplify the topology changes in
subsequent hitless reconfiguration, as shown in Algorithm 5.
Here, Lines 1-7 are similar to their counterparts in Algorithm
4. Then, the for-loop of Lines 9-16 is introduced to simplify
topology changes. Specifically, for each to-be-removed con-
nection e ∈ Gk,t− , we first get its bandwidth usage ζ (Line
10) and update the total bandwidth utilization on removed
connections (Line 11). Next, we calculate paths within the hop-
count limit h and record the available bandwidth for each flow
on the paths in the current physical topology after applying
the changes in G̃k,t (Lines 13). In Line 14, we update the
required bandwidth of the flows on removed connections and
the available bandwidth on the paths. Finally, the metric of
each sub-topology is calculated based on the number of its
to-be-added connections, total bandwidth utilization on its to-
be-removed connections, and the ratio of available bandwidth,
after removing the to-be-removed connections, to the total
bandwidth required by the flows on those connections (Line
17).

C. Algorithm to Realize Hitless Reconfiguration

After determining the target physical topology, we propose
Algorithm 6 to get a series of intermediate physical topologies
to realize the hitless reconfiguration to the target physical
topology with the smallest number of stages (i.e., solving

Algorithm 4: Scenario for Minimizing Traffic Rerouting

1 for each sub-topology in {Gk,t} do
2 G̃k,t = Gk,t, Gk,t− = Gk,t+ = ∅, m = 0;
3 try to remove as many connections in {∆∗u,v} from

G̃k,tu,v as possible, and add the removed ones in Gk,t− ;
4 for each ∆u,v in {∆u,v} in sorted order do
5 add the connections that can be added between u

and v in G̃k,t, and insert them in Gk,t+ ;
6 end
7 check G̃k,t to add back the connections in {∆∗u,v}

that have no conflict with newly-added connections,
and update Gk,t− accordingly;

8 for each to-be-removed connection in Gk,t− do
9 get bandwidth utilization on the connection as ζ;

10 m = m+ ζ;
11 end
12 ξk,t = |Gk,t+ | −m;
13 end
14 return {ξk,t}, {Gk,t− }, {G

k,t
+ };

Algorithm 5: Scenario for Simplifying Topology Changes

1 for each sub-topology in {Gk,t} do
2 G̃k,t = Gk,t, Gk,t− = Gk,t+ = ∅, m = 0;
3 try to remove as many connections in {∆∗u,v} from

G̃k,tu,v as possible, and add the removed ones in Gk,t− ;
4 for each ∆u,v in {∆u,v} in sorted order do
5 add the connections that can be added between u

and v in G̃k,t, and insert them in Gk,t+ ;
6 end
7 check G̃k,t to add back the connections in {∆∗u,v}

that have no conflict with newly-added connections,
and update Gk,t− accordingly;

8 b = 0, d = 0;
9 for each to-be-removed connection e ∈ Gk,t− do

10 get bandwidth utilization on connection e as ζ;
11 m = m+ ζ;
12 for each flow r using connection e do
13 try to find paths within h hops for flow r in

current physical topology {Dk,t
u,v} after

applying changes in G̃k,t, and record available
bandwidth br and required bandwidth dr of r;

14 b = b+ br, d = d+ dr ;
15 end
16 end
17 ξk,t = |Gk,t+ | −m+ α · bd ;
18 end
19 return {ξk,t}, {Gk,t− }, {G

k,t
+ };

Step 2 of TPE design). Line 1 is for the initialization. We
first attempt to directly use the available free ports to set up
to-be-add connections, making it easier to reroute flows later
(Line 2). If the target physical topology can be achieved by
adding connections directly, the reconfiguration is complete

9

Algorithm 6: Hitless Reconfiguration in Stages for TPE

Input: {Sk,t
u,v}, {Dk,t

u,v}, R, ηth, and h.
Output: Number of required stages S.

1 {Mk,t
u,v} = {Sk,t

u,v}, S = 0;
2 try to set up as many to-be-added connections in {Dk,t

u,v}
as possible, and update {Mk,t

u,v};
3 if {Mk,t

u,v} = {Dk,t
u,v} then

4 S = S + 1;
5 else
6 while {Mk,t

u,v} 6= {Dk,t
u,v} do

7 η = 1;
8 for each sub-topology in {Mk,t

u,v} do
9 for each pod pair u-v in the sub-topology do

10 find to-be-removed connections by
comparing {Mk,t

u,v} and {Dk,t
u,v};

11 select a connection e based on the flow
distribution of connections;

12 if η > ηth then
13 mark ports of e as unavailable;
14 flag = 0;
15 for each flow r on connection e do
16 try to find path(s) for r prioritizing

the connections that will not be
removed, and have fewer hops
and lower available bandwidth;

17 if the path(s) can be found then
18 reroute flow r with path(s);
19 update DCN status;
20 else
21 restore routing of flows on e;
22 flag = 1, break;
23 end
24 end
25 if flag = 0 then
26 remove e from {Mk,t

u,v}, and
update η and DCN status;

27 end
28 end
29 end
30 end
31 try to set up as many to-be-added connections in

{Dk,t
u,v} as possible, and update {Mk,t

u,v};
32 S = S + 1;
33 end
34 end

(Lines 3-4). Otherwise, we proceed to the while-loop Lines 6-
33 to gradually move the current physical topology ({Mk,t

u,v})
toward the target one ({Dk,t

u,v}) iteratively. In each iteration
(each stage), Line 7 is for the initialization, where η records the
residual capacity ratio of the current stage. Then, the for-loop
of Lines 8-30 processes the to-be-removed connections. Lines
10-11 select a to-be-removed connection e. Before removing
the connection e, we greedily reroute all the flows on it onto
alternative paths, prioritizing the connections that will not

be removed, have fewer hops and lower available bandwidth
(Lines 15-19), and if this can be done, we remove e and update
the network status (Lines 25-27), and revert all the rerouting
done for the flows on e (Lines 21-22), otherwise. Finally, we
use the ports freed by the removed connections to set up as
many to-be-added connections as possible to move {Mk,t

u,v}
toward {Dk,t

u,v}, and proceed to the next stage (Lines 31-32).

D. Complexity Analysis

As Algorithms 3-5 are called in Algorithms 1 and 2, we
discuss them first. The time complexity of Algorithms 3 and 4
are both O(T ·K ·|V |2), the complexity of Algorithm 5 is O(T ·
K ·|V |1+h ·|R|), where the hop-count limit h is a constant and
its value is usually relatively small (e.g., 2 or 3) [8]. Algorithm
2 is a sub-procedure of Algorithm 1, and its complexity is
O(Im ·K2 ·T 2 ·(O+ |V |3)), where O is the complexity of one
among Algorithms 3-5. As the complexity of other procedure
in Algorithm 1 is much lower than that of Algorithm 2, the
complexity of Algorithm 1 can be approximated as O(Im ·K2 ·
T 2 · (O + |V |3)). The complexity of Algorithm 6 is O(|R| ·
(|R|+ |V | · log |V |+ T ·K · |V |) · T 2 ·K2 · |V |3).

V. PERFORMANCE EVALUATION

In this section, we evaluated the performance of our pro-
posed algorithms with numerical simulations.

A. Simulation Setup

To ensure the service availability during switch failures, we
made each pod connect to all the OCS-based switch groups,
and assumed that the ports of each OCS-based switch group
are evenly distributed to the pods to interconnect them [8]. The
simulations considered two scenarios, i.e., the small-scale and
large-scale ones. In the small-scale simulations, we made sure
that the problem was small-sized such that the MILP in Section
III-C could be solved within reasonable time. Specifically,
we considered one or two OCS-based switch groups, each
composed of 1, 2 or 4 switches. The number of ports of each
OCS-based switch could be {12, 18, 24}, and the number of
pods varied in [4, 8]. The large-scale simulations addressed
two or four OCS-based switch groups, with the number of
switches in each group being {1, 2, 4, 6}. The number of ports
on each switch varied in [32, 512], while the number of pods
varied in [16, 256]. In both scenarios, the pods were equipped
with 100GbE optical ports. We made the inter-pod traffic in R
consume 10%-50% of the DCN’s total capacity, and changed
the number of elements in R within [1, |V |2 − |V |].

The simulations assessed four schemes for TPE with hitless
reconfiguration: 1) our MILP model formulated in Section
III-C, and 2) Adapted-Gemini, 3) Min-Rerouting, and 4) Simp-
TPChange presented in Section IV. The simulations run on
a computer with 2.2 GHz Intel Xeon Silver 4210 CPU and
128 GB memory, and the software environment was PyCharm-
2023.3.4 with Gurobi 9.5.1 [42] and MATLAB 2020b.

10

TABLE I
RESULTS OF SMALL-SCALE SIMULATIONS

MILP Adapted-Gemini Min-Rerouting Simp-TPChange

|V | S∗ Running Time (s) S Running Time (s) δ (%) S Running Time (s) δ(%) S Running Time (s) δ (%)

4 1 0.080 1 0.004 0 1 0.004 0 1 0.005 0

6 1 738.630 1.7 0.020 70 1 0.008 0 1 0.013 0

8 1.3 4209.475 2.7 0.058 179 1.7 0.138 30.5 1.3 0.028 0

B. Small-Scale Simulations

We first conducted small-scale simulations to compare the
performance of the algorithms, where the longest running time
of MILP was set as three hours and the source and destination
of each inter-pod flow in R were chosen randomly. Here, we
denote the optimal result on reconfiguration stages from MILP
as S∗ and the corresponding result from a heuristic as S, and
then the performance gap of the heuristic becomes,

δ =
S − S∗

S∗
. (24)

The simulation results are shown in Table I, where each
value was obtained by averaging the results from 3 indepen-
dent runs. In all the runs, the algorithms were able to obtain
physical topologies that realize the target logical topologies
exactly. From Table I, we can see that MILP always provides
the fewest reconfiguration stages but it is very time-consuming,
taking more than one hour to solve the joint optimization for
the instance of 8 pods. All the three heuristics yield the same
optimal solutions as output by MILP in the 4-pod scenario.
However, as the number of pods increases, Adapted-Gemini
fails to achieve the optimal performance. This indicates that
simply minimizing rewiring in the first step of TPE does
not necessarily reduce the number of reconfiguration stages
because it does not address the impact of traffic rerouting.
By minimizing traffic rerouting, Min-Rerouting still secures
the optimal performance in the case of 6 pods, but its gap
to MILP soars to 30.5% when the number of pods is further
increased to 8. Simp-TPChange performs the best among the
three heuristics and obtains solutions same to those from MILP
consistently. Overall, the results suggest that the joint opti-
mization of the two steps of TPE is beneficial and simplifying
topology changes in the first step can accelerate the hitless
reconfiguration better than the other two approaches.

We also investigated the impact of ηth (i.e., the threshold on
residual capacity ratio of each stage) on reconfiguration stages.
Fig. 5 shows the results obtained when the number of pods and
bandwidth usage are set to be 8 and 0.5, respectively. Again,
Simp-TPChange performs the best in all settings. The number
of reconfiguration stages increases with ηth, because a larger
ηth reserves more bandwidth during each reconfiguration
stage, making it harder to finish hitless reconfiguration toward
the target physical topology within fewer stages.

C. Large-Scale Simulations

We then run large-scale simulations to further assess the
proposed heuristic algorithms. Since the algorithms might

0.95 0.85 0.75 0.65
0

5

10

15

20

25

30

35

40
Adapted-Gemini
Min-Rerouting
Simp-TPChange

Fig. 5. Impact of threshold ηth on reconfiguration stages from algorithms.

16 32 64 128 256
0

0.01

0.02

0.03

0.04

0.05

Fig. 6. Performance of approximating logical topologies with physical ones.

not always realize the target logical topologies exactly, we
quantify the distances between the obtained and target logical
topologies by calculating the ratios of the number of missing
connections in the obtained logical topologies to the total num-
ber of connections in the target ones. As shown in Fig. 6, the
logical topologies obtained by the three algorithms have, on
average, less than 5% missing connections compared with the
target ones. The results manifest that the proposed algorithms
can still obtain physical topologies to closely approximate
target logical topologies even in large-scale settings.

Fig. 7 shows the numbers of reconfiguration stages required
by the three algorithms. The results coincide with those
obtained from the small-scale simulations, showing that Simp-
TPChange consistently outperforms the others while Adapted-
Gemini requires the most stages. This confirms again the

11

16 32 64 128 256
0

1

2

3

4
Adapted-Gemini
Min-Rerouting
Simp-TPChange

Fig. 7. Reconfiguration stages from heuristics in large-scale simulations.

16 32 64 128 256
0

50

100

150

200

250
Adapted-Gemini
Min-Rerouting
Simp-TPChange

Fig. 8. Number of connections removed by algorithms.

16 32 64 128 256
0

200

400

600

800

1000

1200

1400
Adapted-Gemini
Min-Rerouting
Simp-TPChange

Fig. 9. Total bandwidth usage on connections removed by algorithms.

superiority of the proposed topology simplification strategy
over minimum rewiring. We also notice that the number of
reconfiguration stages does not vary evidently as the scale
of DCNs enlarges. This phenomenon can be attributed to the
fact that the number of reconfiguration stages is influenced
primarily by the availability of network resources for traffic
rerouting (aside from ηth), which is less correlated with the
number of pods. We have justified the impact of ηth in
Section V-B, and we will validate the presumption later by
evaluating how bandwidth availability affects the number of

16 32 64 128 256
0

200

400

600

800

1000
Adapted-Gemini
Min-Rerouting
Simp-TPChange

Fig. 10. Total bandwidth of traffic rerouted by algorithms.

reconfiguration stages.
To shed light on the rationale behind the performance gaps

between the heuristics, we counted more statistics, including
the number of removed connections, the total bandwidth
utilization on removed connections, and the volume of rerout-
ed traffic during hitless reconfigurations, and present their
results in Figs. 8-10, respectively. In Fig. 8, the number of
removed connections from Adapted-Gemini is slightly small-
er than those of Min-Rerouting and Simp-TPChange. This
is because Adapted-Gemini only tries to minimize rewiring
connections in calculating target physical topologies, whereas
Min-Rerouting and Simp-TPChange favor more reconfigura-
tions (thus, get closer to the target logical topologies) by
also considering the impact of bandwidth usage and traffic
rerouting of the removed connections. For the same reason,
Figs. 9-10 show better results on the other statistics from Min-
Rerouting and Simp-TPChange. Besides, as Min-Rerouting
pays attention to the bandwidth usage on removed connections
when getting target physical topologies, it always gets the
minimum bandwidth usage on removed connections.

16 32 64 128 256
0

0.5

1

1.5

2

2.5

3
Uniform Distribution
Tree-like Distribution
Sparse Distribution

Fig. 11. Impact of traffic distribution on algorithms’ performance.

Finally, we conducted simulations to study the impacts of
different traffic characteristics on the performance of the three
algorithms. We first assessed the algorithms with three traffic
distributions, i.e., uniform, tree-like, and sparse distributions.
Fig. 11 shows the results on number of reconfiguration stages

12

0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

Fig. 12. Impact of traffic load ratio on algorithms’ performance.

0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 13. Impact of bandwidth utilization on algorithms’ performance.

when the traffic in R follows the distributions, where each bar
denotes the average of the results from the three algorithms.
We can see that the sparse distribution leads to more recon-
figuration stages in most of the cases. This is because under
this distribution, inter-pod traffic is rather dispersed and thus
removing connections will likely implicate rerouting of more
flows, causing more conflicts between the connections to be
removed. In contrast, the tree-like distribution features a traffic
matrix with flows concentrated on only a small portion of pods
with fewer scattered flows. Therefore, less traffic rerouting and
in turn fewer stages will be involved during reconfigurations.
As for the uniform distribution, since traffic is evenly spread,
more flows can be rerouted within one stage. This enables
the removal of more connections, which frees up additional
ports for establishing new connections in the same stage, and
hereby, reduces the number of reconfiguration stages required.

Using the ratio of the number of pod pairs that carry traffic
to the total number of pod pairs as the measure of traffic load
ratio, we show the impact of traffic load on the number of
reconfiguration stages in Fig. 12, where each bar is still for
the average result of the algorithms. Clearly, the number of
reconfiguration stages increases with the traffic load ratio. This
is because more actively-communicating pods result in more
traffic rerouting during reconfiguration, restricting the number
of connections that can be concurrently removed in each
stage. Similar to the observations drawn from Fig. 12, when

we change traffic load by adjusting the average bandwidth
utilization in the DCN, Fig. 13 indicates that increasing traffic
load leads to more reconfiguration stages. The reason is also
similar, as a larger bandwidth usage implies more traffic to be
rerouted, and thereby, fewer connections can be removed in
parallel due to the limited bandwidth availability.

VI. CONCLUSION

This work studied how to optimize the two steps of TPE
jointly to efficiently accelerate the hitless reconfiguration of
an OCS-based DCN. We formulated an MILP to solve the
problem exactly, and proposed an approach that can optimize
TPE design greedily according to various metrics to minimize
the number of stages required in hitless reconfiguration for
TPE. Simulations verified the effectiveness of our proposals.
Specifically, the results suggested that simply focusing on
minimizing rewirings in the first step of TPE cannot accelerate
the hitless reconfiguration in its second step effectively.

ACKNOWLEDGMENTS

Xiaoliang Chen and Zuqing Zhu are the co-corresponding
authors. This work was supported by NSFC project 62371432.

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] H. Liu et al., “Lightwave Fabrics: At-scale optical circuit switching for
datacenter and machine learning systems,” in Proc. of ACM SIGCOMM
2023, pp. 499–515, Aug. 2023.

[3] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[4] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[5] A. Greenberg et al., “VL2: a scalable and flexible data center network,”
in Prof. of ACM SIGCOMM 2009, pp. 51–62, Aug. 2009.

[6] N. Jouppi et al., “TPU v4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings,” in Proc.
of ISCA 2023, pp. 1–14, Jun. 2023.

[7] A. Singh et al., “Jupiter Rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” in Proc. of ACM
SIGCOMM 2015, pp. 183–197, Aug. 2015.

[8] M. Zhang et al., “Gemini: Practical reconfigurable datacenter networks
with topology and traffic engineering,” arXiv preprint arXiv:2110.08374,
Oct. 2021. [Online]. Available: https://arxiv.org/abs/2110.08374.

[9] K. Chen et al., “OSA: An optical switching architecture for data cen-
ter networks with unprecedented flexibility,” IEEE/ACM Trans. Netw.,
vol. 22, pp. 498–511, Mar. 2013.

[10] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[11] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[12] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[13] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[14] W. Lu, Z. Zhu, and B. Mukherjee, “On hybrid IR and AR service
provisioning in elastic optical networks,” J. Lightw. Technol., vol. 33,
pp. 4659–4669, Nov. 2015.

[15] P. Lu and Z. Zhu, “Data-oriented task scheduling in fixed- and flexible-
grid multilayer inter-DC optical networks: A comparison study,” J.
Lightw. Technol., vol. 35, pp. 5335–5346, Dec. 2017.

13

[16] J. Zerwas et al., “Duo: A high-throughput reconfigurable datacenter
network using local routing and control,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 7, pp. 1–25, Mar. 2023.

[17] N. Farrington et al., “Helios: a hybrid electrical/optical switch architec-
ture for modular data centers,” in Proc. of ACM SIGCOMM 2010, pp.
339–350, Aug. 2010.

[18] G. Wang et al., “c-Through: Part-time optics in data centers,” in Proc.
of ACM SIGCOMM 2010, pp. 327–338, Aug. 2010.

[19] L. Poutievski et al., “Jupiter evolving: transforming Google’s datacenter
network via optical circuit switches and software-defined networking,”
in Proc. of ACM SIGCOMM 2022, pp. 66–85, Aug. 2022.

[20] H. Yang and Z. Zhu, “Traffic-aware configuration of all-optical data
center networks based on Hyper-FleX-LION,” IEEE/ACM Trans. Netw.,
in Press, 2024.

[21] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, pp. 63–74, Aug. 2008.

[22] J. Zerwas, W. Kellerer, and A. Blenk, “What you need to know about
optical circuit reconfigurations in datacenter networks,” in Proc. of ITC
2021, pp. 1–9, Aug. 2021.

[23] M. Teh, Z. Wu, and K. Bergman, “Flexspander: augmenting expander
networks in high-performance systems with optical bandwidth steering,”
J. Opt. Commun. Netw., vol. 12, pp. B44–B54, Feb. 2020.

[24] X. Chen et al., “Machine-learning-aided cognitive reconfiguration for
flexible-bandwidth HPC and data center networks,” J. Opt. Commun.
Netw., vol. 13, pp. C10–C20, Jan. 2021.

[25] L. Schares et al., “A reconfigurable interconnect fabric with optical
circuit switch and software optimizer for stream computing systems,”
in Proc. of OFC 2009, pp. 1–3, Mar. 2009.

[26] J. Benjamin et al., “PULSE: Optical circuit switched data center
architecture operating at nanosecond timescales,” J. Lightw. Technol.,
vol. 38, pp. 4906–4921, May 2020.

[27] H. Ballani et al., “Sirius: A flat datacenter network with nanosecond
optical switching,” in Proc. of ACM SIGCOMM 2020, pp. 782–797, Jul.
2020.

[28] G. Liu et al., “Architecture and performance studies of 3D-Hyper-FleX-
LION for reconfigurable All-to-All HPC networks,” in Proc. of SC 2020,
pp. 1–16, Nov. 2020.

[29] M. Khani et al., “SiP-ML: high-bandwidth optical network interconnects
for machine learning training,” in Proc. of ACM SIGCOMM 2021, pp.
657–675, Aug. 2021.

[30] P. Cao et al., “TROD: Evolving from electrical data center to optical
data center,” in Proc. of ICNP 2021, pp. 1–11, Dec. 2021.

[31] Y. Tang et al., “Effectively reconfigure the optical circuit switching layer
topology in data center network by OCBridge,” J. Lightw. Technol.,
vol. 37, pp. 897–908, Feb. 2019.

[32] Q. Li et al., “Scalable knowledge-defined orchestration for hybrid
optical/electrical datacenter networks,” J. Opt. Commun. Netw., vol. 12,
pp. A113–A122, Feb. 2020.

[33] Z. Zhao, B. Guo, Y. Shang, and S. Huang, “Hierarchical and reconfig-
urable optical/electrical interconnection network for high-performance
computing,” J. Opt. Commun. Netw., vol. 12, pp. 50–61, Mar. 2020.

[34] H. Yang and Z. Zhu, “Topology configuration scheme for accelerating
coflows in a hyper-FleX-LION,” J. Opt. Commun. Netw., vol. 14, pp.
805–814, Sept. 2022.

[35] M. Teh, S. Zhao, P. Cao, and K. Bergman, “COUDER: robust topology
engineering for optical circuit switched data center networks,” arXiv
preprint arXiv:2010.00090, 2020.

[36] Y. Zhao et al., “Dynamic topology management in optical data center
networks,” J. Lightw. Technol., vol. 33, pp. 4050–4062, Aug. 2015.

[37] W. Zheng, X. Chen, and Z. Li, “Fast and nondisruptive reconfiguration
design for optical datacom networks,” in Proc. of PSC 2023, pp. 1–3,
Sept. 2023.

[38] G. Porter et al., “Integrating microsecond circuit switching into the data
center,” in Proc. of ACM SIGCOMM 2013, pp. 447–458, Aug. 2013.

[39] M. Garey and D. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. New York, 1979.

[40] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-
complete graph problems,” Theor. Comput. Sci., vol. 1, no. 3, pp. 237–
267, 1976.

[41] S. Zhao et al., “Minimal rewiring: Efficient live expansion for Clos data
center networks,” in Proc. of NSDI 2019, pp. 221–234, Aug. 2019.

[42] “Gurobi.” [Online]. Available: https://www.gurobi.com/.

