
On Scheduling DML Jobs in All-Optical DCNs
with In-Network Computing

Xiaoyan Dong, Hao Yang, Yuxiao Zhang, Xuexia Xie, and Zuqing Zhu†
School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email:{zqzhu}@ieee.org

Abstract—Enabled by programmable data plane (PDP), in-
network computing (INC) can offload the computation phase of
distributed machine learning (DML) training to accelerate the
execution of parameter servers (PS’). Meanwhile, all-optical in-
terconnect (AOI) can effectively improve the network throughput
for DML training. This work studies how to schedule a batch of
parallel DML jobs in an all-optical data center network (DCN)
to fully explore the mutual benefits of INC and AOI. Specifically,
for each DML job, we determine where to deploy its workers,
whether and where to offload/place its PS, and how to plan the
routing of data transfers between the workers and the PS, such
that its job completion time (JCT) is minimized. We formulate
a mixed integer linear programming (MILP) model to optimize
the job scheduling for the cases with and without INC, and
propose a heuristic to tackle the case with INC quickly. Extensive
simulations confirm the effectiveness of our proposals.

Index Terms—All-optical data-center networks (DCNs), In-
network computing (INC), Distributed machine learning (DML).

I. INTRODUCTION

In the era of artificial intelligence (AI), the rapid surge in
data volume and exponential growth in computing demands
have bought unprecedented challenges to the traditional data
center networks (DCNs) based on electrical packet switching
(EPS), on energy consumption, scalability, and adaptivity [1,
2]. Therefore, optical circuit switching (OCS) has been grad-
ually deemed as a preferable choice over EPS in DCNs due to
its higher energy efficiency, larger port capacity, and shorter
data transfer latency [3–8]. This leads to the amalgamation of
OCS and EPS to realize hybrid optical/electrical DCNs (HOE-
DCNs) [3], but the coexistence of OCS and EPS would also
result in more intricate system design and maintenance. On
the other hand, the major part of the fast-growing applications
in DCNs (e.g., distributed machine learning (DML)) are much
more likely to generate elephant flows than legacy DC services
[9]. Hence, the all-optical DCN that purely relies on OCS for
inter-rack/pod connections can be built with a flat architecture
(e.g., in Leaf-Spine [10]), to serve these bandwidth-intensive
applications with effectively-reduced bandwidth competition
and communication delay. For instance, Fig. 1 shows a simple
example on such an all-optical DCN, where the top-of-rack
(ToR) switches are interconnected by an optical cross-connect
(OXC) to form a Leaf-Spine-type inter-rack topology.

DML is introduced to address the situations where the
training data is inherently distributed or cannot be stored on
a single server [9], and it is known that all-optical DCNs can
effectively accelerate DML jobs [11]. There are four typical
types of DML frameworks: Parameter Server (PS), Distributed

Fig. 1. Example on all-optical DCN in Leaf-Spine.

Data Parallel (DDP), Ring-AllReduce (Ring), and Peer-to-Peer
(P2P), among which PS is arguably the most widely adopted
one due to its superior scalability [12]. The PS framework
accomplishes the training of a DML model with workers and
PS’, where each worker trains a local replica of the DML
model with a subset of the training data, and each PS talks with
specific workers to pull and push model parameters. Therefore,
the communication phase of DML training in PS uses a
tree-type topology, which can be easily mapped to an all-
optical DCN in Leaf-Spine. To this end, a number of existing
studies have considered accelerating the communication phase
of DML training in PS in all-optical DCNs [11, 13].

In addition to the communication phase, the computation
phase of DML training in PS’ can also be accelerated, e-
specially with the in-network computing (INC) enabled by
the programmable data plane (PDP) [14]. Specifically, we can
offload the computing tasks of averaging model parameters
on one PS to a PDP ToR switch, such that the tasks can run
much faster with the hardware-based line-speed processing
in the ToR switch and inter-rack traffic can be avoided if
the PS and its workers are not located in the same rack.
Previously, in [15], we have experimentally demonstrated that
INC and all-optical interconnect (AOI) can mutually benefit
each other when accelerating distributed computing jobs in
tree-type clusters. More specifically, the large capacity of AOI
better utilizes the INC at line-speed on high-throughput ToR
switches, while the reshaping of inter-rack traffic achieved by
INC helps to reduce the frequency of AOI reconfigurations.

However, the advantages of the symbiosis of INC and AOI
cannot be fully explored without a carefully-designed approach
to schedule DML jobs in it. Specifically, for each DML job,

Fig. 2. Examples on scheduling one DML job with multiple racks in an all-optical DCN with INC.

the approach needs to determine where to deploy its workers,
whether and where to offload/place its PS, and how to plan
the routing of data transfers between the workers and the PS,
such that the mutual benefits of INC and AOI can be exploited
to minimize its job completion time (JCT). To the best of our
knowledge, this problem has not been studied in the literature
yet. In this work, we tackle it for a batch of parallel DML jobs.
A mixed integer linear programming (MILP) model is first
formulated to solve the problem exactly, followed by a time-
efficient heuristic based on worker cluster grouping. Extensive
simulations confirm the effectiveness of our proposals.

The rest of this paper is organized as follows. Section II
describes the network model and formulates the MILP model.
We propose the heuristic based on worker cluster grouping in
Section III. The performance of our proposals is evaluated in
Section IV. Finally, Section V summarizes the paper.

II. PROBLEM DESCRIPTION

In this section, we first describe the network model of an
all-optical DCN with INC, then formulate the MILP model to
optimize the scheduling of DML jobs in it.

A. Network Model

Fig. 1 depicts the all-optical DCN considered in this work,
where the servers in each rack have direct connections with
their ToR switch and the ToR switches can be connected with
each other through an OXC1. The bandwidth capacity between
each ToR switch and its server pool is equal to that between
the ToR switch and the OXC. The OXC consists of NOXC
ports, and each port can only be connected to one other port,
then duplex communication can be realized through the pair
of ports. Therefore, the all-optical DCN can be modeled as
a non-blocking NOXC ×NOXC OCS network [13]. There is a
batch of parallel DML jobs to schedule in the all-optical DCN,
and each DML job includes a PS and several workers.

To schedule the DML jobs, we first need to determine
where to deploy their workers and PS’. Here, the workers can
only be deployed in server pools, while a PS can be placed
on either a PDP ToR switch (i.e., offloaded with INC) or a

1As a commercial OXC can easily scale up to a port count of NOXC = 384
or even more [16], this work only considers one OXC in the all-optical DCN.

server. Note that, although deploying the workers and PS of a
DML job in a same rack helps to reduce both communication
latency and inter-rack traffic, it might also lead to the resource
fragmentation that restricts the utilization of bandwidth and IT
resources in a DCN [17]. Hence, we allow the workers and
the PS of a DML job to be deployed in different racks.

As synchronous training usually converges faster than asyn-
chronous training [18], we assume that all the DML jobs
use synchronous training, and do not consider special training
strategies like dropout. Hence, each worker of a DML job
updates all the model parameters synchronously in each iter-
ation. In each iteration of the DML training in PS, there are
four key steps: local calculation, pull, PS update, and push. As
the local calculation step is mainly accomplished by workers,
its calculation time can be treated as a constant for each DML
job and ignored from the optimization. This is because workers
can only be deployed in server pools. The duration of the PS
update step depends on whether the PS is deployed on a server
or a PDP ToR switch. According to our experimental results
in [15], the duration in the former case is proportion to the
data size of model parameters, while that in the latter case
is so short that it can be approximated as 0. The duration of
the pull/push step is the longest flow completion time (FCT)
to transmit all the model parameters, which is determined by
the bandwidth allocated to the corresponding flow. Since we
consider synchronous training, the flow sizes for the pull and
push steps of a DML job are equal. Therefore, we only need to
optimize one of the two steps and apply the same setting to the
other, i.e., the two steps are treated equally in our optimization.

The examples in Fig. 2 explain the schemes that schedule
a DML job in multiple racks. Here, the DML job includes
4 workers and a PS, each rack is equipped with a 4×4 ToR
switch, where the uplink/downlink capacity of each port is
100 units/s, and the size of each flow in pull/push step is 500
units. The scheme in Fig. 2(a) deploys all the workers in Rack
1 and places the PS in Rack 2, and a bandwidth of 100 units/s
is allocated between each worker and the PS. Then, the length
of the pull/push step is 5 seconds. In Fig. 2(b), the scheme
places two workers in Rack 1, deploys the rest of the DML job
in Rack 2, and still allocates 100 units/s to each worker-PS pair
due to the downlink capacity of each port on the ToR switch

of Rack 2. The length of the pull/push step is still 5 seconds.
In Fig. 2(c), we deploy the workers as in Fig. 2(b) but offload
the PS to the ToR switch of Rack 1. Then, compared with the
schemes in Figs. 2(a) and 2(b), inter-rack traffic is reduced
by half and 200 units/s can be assigned to each worker-PS
pair, shortening a pull/push step to 2.5 seconds. Moreover, the
scheme in Fig. 2(c) also shortens the PS update step.

B. MILP Model

We formulate an MILP model to optimize the scheduling of
DML jobs in an all-optical DCN exactly, and the parameters
and variables are tabulated in Table I. We denote the set of
all racks and those with PDP ToR switches as Rs and Rc,
respectively (Rc ⊆ Rs). Therefore, the MILP also covers the
all-optical DCNs without INC, when we have Rc = ∅.

TABLE I
PARAMETERS AND VARIABLES OF MILP

Parameters

J the set of DML jobs (i ∈ J).
Wi the set of workers of Job i (j ∈Wi).
Rs the set of racks (k ∈ Rs).
Rc the set of racks with PDP ToR switches.

B
the uplink/downlink capacity of each port on
ToR switches.

NToR
the number of ToR switch ports connected to
server pool/OXC.

Nk
the set of ToR switch ports connected to OXC
from Rack k.

D the set of data to transfer for DML jobs (di ∈ D).
NOXC the set of OXC ports (n ∈ P).
SCPU
k /SGPU

k the CPU/GPU capacity of Rack k.
SMEM
k the memory capacity of Rack k.

PMEM
i /PCPU

i

the memory/CPU resources required by PS of Job i
in server pool.

Ck
the number of PS’ that the PDP ToR switch on
Rack k can accommodate.

WCPU
ij /WGPU

ij the CPU/GPU resources required by Worker j of Job i.
WMEM
ij the memory resources required by Worker j of Job i.

α the ratio of PS update to communication time in server.

Variables

pcik
the binary variable that equals 1 if PS of Job i is
on PDP ToR switch of Rack k, and 0 otherwise.

psik
the binary variable that equals 1 if PS of Job i is
on server pool of Rack k, and 0 otherwise.

wijk
the binary variable that equals 1 if Worker j of Job i
is on server pool of Rack k, and 0 otherwise.

Lnm
the binary variable that equals 1 if Ports n and m
of OXC are connected, and 0 otherwise.

b
w2p,s
ijst /b

w2p,c
ijst

the uplink bandwidth between Worker j of Job i on
Rack s and PS on server pool/ToR switch of Rack t.

b
p2w,s
ijst /b

p2w,c
ijst

the downlink bandwidth between Worker j of Job i on
Rack s and PS on server pool/ToR switch of Rack t.

bsijs
the bandwidth between Worker j of Job i and PS on
server pool of Rack s.

bcijs
the uplink bandwidth between Worker j of Job i and
PS on ToR switch of Rack s.

fij the inverse of JCT of Worker j of Job i.
M a large positive constant.

Constraints: ∑
i∈J

pcik ≤ Ck, ∀k ∈ Rc. (1)

Eq. (1) ensures that the PS’ offloaded to the PDP ToR switch
of each rack do not exceed the switch’s capacity [17].

∑
i∈J

psik · P CPU
i +

∑
i∈J

∑
j∈Wi

wijk ·W CPU
ij ≤ SCPU

k ,∑
i∈J

∑
j∈Wi

wkij ·WGPU
ij ≤ SGPU

k ,∑
i∈J

psik · PMEM
i +

∑
i∈J

∑
j∈Wi

wijk ·WMEM
ij ≤ SMEM

k ,

∀k ∈ Rs.

(2)
Eq. (2) ensures that the deployments of workers and PS’ satisfy
the IT resource constraints of each rack.∑

k∈Rs

wijk = 1, ∀i ∈ J , j ∈Wi. (3)

Eq. (3) ensures each worker runs on one and only one rack.∑
k∈Rs

(psik + pcik) = 1, ∀i ∈ J . (4)

Eq. (4) ensures that the PS of each job is deployed on either
the server pool or PDP ToR switch of a rack.{

pcik ≤ 1, ∀i ∈ J , k ∈ Rc,
pcik = 0, otherwise.

(5)

Eq. (5) ensures that if a PS is offloaded to a ToR switch with
INC, then the ToR switch has to be a PDP-based one.

zw2p,s
ijst ≥ wijs + psit − 1,

zw2p,s
ijst ≤ 1

2
· (wijs + psit) ,

bw2p,s
ijst ≤M · zw2p,s

ijst ,

∀i ∈ J , j ∈Wi, {s, t ∈ Rs : s 6= t},

(6)
zw2p,c
ijst ≥ wijs + pcit − 1,

zw2p,c
ijst ≤ 1

2
· (wijs + pcit) ,

bw2p,c
ijst ≤M · zw2p,c

ijst ,

∀i ∈ J , j ∈Wi, {s, t ∈ Rs : s 6= t}.

(7)
Eqs. (6) and (7) ensure that the values of variables {bw2p,s

ijst }
and {bw2p,c

ijst } are correctly set, where zw2p,s
ijst and zw2p,c

ijst are the
auxiliary variables used for linearization.{

zsijk ≥ wijk + psik − 1,
zsijk ≤ 1

2
· (wijk + psik) ,

bsijk ≤M · zsijk,
∀i ∈ J , j ∈Wi, k ∈ Rs, (8)

{
zcijk ≥ wijk + pcik − 1,
zcijk ≤ 1

2
· (wijk + pcik) ,

bcijk ≤M · zcijk,
∀i ∈ N, j ∈Wi, k ∈ Rs. (9)

Eqs. (8) and (9) ensure that the values of variables {bsijk} and
{bcijk} are correctly set, where zcijk and zcijk are the auxiliary
variables used for linearization.∑

t∈Rs

∑
i∈J

∑
j∈Wi

(
bw2p,s
ijst + bw2p,c

ijst

)
+
∑
i∈J

∑
j∈Wi

(
bcijs + bsijs

)
≤ NToR ·B, ∀s ∈ Rs.

(10)

∑
t∈Rs

∑
i∈J

∑
j∈Wi

(
bp2w,s
ijst + bp2w,c

ijst

)
≤ NToR ·B, ∀s ∈ Rs. (11)

∑
t∈Rs

∑
i∈J

∑
j∈Wi

bp2w,s
ijst +

∑
i∈J

∑
j∈Wi

bsijs ≤ NToR ·B, ∀s ∈ Rs.

(12)

Eqs. (10)-(12) ensure that the total uplink/downlink band-
width allocated to the workers and PS’ running on each rack
satisfies the bandwidth constraints of the rack.

Lnm = Lmn,∑
n∈NOXC

Lnm ≤ 1,∑
i∈J

∑
j∈Wi

(
bw2p,s
ijst + bw2p,c

ijst

)
≤
∑
n∈Ns

∑
m∈Nt

Lnm ·B,∑
i∈J

∑
j∈Wi

(
bp2w,s
ijst + bp2w,c

ijst

)
≤
∑
n∈Ns

∑
m∈Nt

Lnm ·B,

{n,m ∈ NOXC : n 6= m}, {s, t ∈ Rs : s 6= t}.

(13)

Eq. (13) ensures that the OXC ports are connected one-to-one,
and inter-rack traffic can only go through two connected OXC
ports and needs to satisfy the bandwidth constraints.

fij −
(

b
w2p,s
ijst

2·di·(1+α)

)
≤M ·

(
1− zw2p,s

ijst

)
,(

b
w2p,s
ijst

2·di·(1+α)

)
− fij ≤M ·

(
1− zw2p,s

ijst

)
,

∀i ∈ J , j ∈Wi, {s, t ∈ Rs : s 6= t},

(14)

fij −

(
b

w2p,c
ijst

2·di

)
≤M ·

(
1− zw2p,c

ijst

)
,(

b
w2p,c
ijst

2·di

)
− fij ≤M ·

(
1− zw2p,c

ijst

)
,

∀i ∈ J , j ∈Wi, {s, t ∈ Rs : s 6= t}.

(15)

Eqs. (14) and (15) obtain fij , which is the inverse of the JCT of
Worker j of Job i (after excluding the local calculation step),
where α is the ratio of PS update step to communication time
when the PS is placed in server pool, and it is proportional
to the data size of model parameters. As we have explained
before, the length of the PS update step can be treated as 0 if
the PS is offloaded to a PDP ToR switch with INC [15].

0 ≤ f ≤ fij ∀i ∈ J , j ∈Wi. (16)

Eq. (16) gets the minimum value of {fij} as f .
Objective:
As f is the minimum of all the inverses of JCTs, 1

f is the
longest JCT. Hence, the optimization objective of minimizing
the longest JCT of all the DML jobs is equivalent to

Maximize f. (17)

III. ALGORITHM DESIGN

Although the MILP can optimize the scheduling of DML
jobs in an all-optical DCN exactly, solving it can become
intractable when the problem size is relatively large. Therefore,
we, in this section, propose a time-efficient heuristic based
on worker cluster grouping (WCG) to speed up the problem-
solving, as shown in Algorithm 1. Lines 1-6 explain how to get
the worker clusters of DML jobs in J , group them, and deploy
them to racks accordingly. Specifically, we put the workers of
each job in a cluster to deploy in one rack, and try to shorten
the longest pull/push steps of the DML jobs by distributing
the clusters evenly in data transfer sizes on the racks. Then,
we place the PS of each job (Lines 7-24), i.e., we first try to
offload the PS to a PDP ToR switch (Lines 9-15), and if this
cannot be done, we deploy it on a server (Lines 16-23).

Algorithm 1: Heuristic Based on Worker Cluster Grouping
1 put workers of each DML job in J in a cluster;
2 sort worker clusters in descending order of data transfer sizes;
3 try to put |Rs| worker clusters in one group in sorted order until

each cluster is assigned to one group, and obtain a group set G;
4 for each group g ∈ G do
5 utilize a resource balancing strategy to deploy each cluster

in g to a rack k ∈ Rs;
6 end
7 sort DML jobs in J in descending order of data transfer sizes;
8 for each job i ∈ J in sorted order do
9 sort the racks that carry workers of Job i in descending

order of worker numbers, and set flag = 0;
10 for each rack k in sorted order do
11 try to deploy PS of Job i on the ToR switch of Rack k;
12 if the PS is successfully deployed then
13 flag = 1, break;
14 end
15 end
16 if flag = 0 then
17 for each rack k in sorted order do
18 try to deploy PS of Job i on a server of Rack k;
19 if the PS is successfully deployed then
20 break;
21 end
22 end
23 end
24 end
25 get the inter-rack data transfer matrix D according to

deployments of workers and PS’;
26 stuff D to obtain a perfect matrix D′;
27 decompose D′ into a set of permutation matrices with specific

coefficients by Birkhoff-von Neumann decomposition;
28 determine the number of physical connections through OXC for

each rack pair based on the permutation matrices’ coefficients;
29 allocate uplink/downlink bandwidth through ToR switch/OXC

to each worker-PS pair in proportion to its data transfer size;
30 calculate the longest JCT of all the DML jobs in J ;

Next, Lines 25-28 explain how to connect racks through
the OXC. First, we denote the inter-rack data transfer sizes
with matrix D (Line 25). Then, Line 26 stuffs D to get
a perfect matrix D′. According to Birkhoff-von Neumann
(BvN) theorem [19], any perfect matrix2 can be decomposed
into a set of permutation matrices with specific coefficients.
By leveraging the analysis in [20], we find that if physical
connections through the OXC are allocated to rack pairs
in proportion to the permutation matrices’ coefficients, the
longest duration of pull/push steps of the DML jobs can be
minimized. This explains the rationale behind Lines 27-28.
Finally, Line 29 allocates bandwidth for the communications
between workers and their PS’, and Line 30 obtains the longest
JCT of all the DML jobs with the obtained scheduling scheme.

Fig. 3 provides an illustrative example on how to connect
racks through the OXC with Lines 25-28. Initially, the inter-
rack data transfer matrix D is irregular and cannot be decom-
posed into a set of permutation matrices. Here, a permutation
matrix is a square binary matrix that has exactly one element
of 1 in each row and each column (denoting a connection
between a pair of OXC ports) with all the other elements as 0,
where the i-th row/column of a permutation matrix represents

2A perfect matrix is a square matrix of non-negative real numbers, where
the sum of elements is the same for all the rows/columns.

the ingress/egress ports of the i-th rack. We stuff D to a
perfect matrix D′ to ensure the feasibility of decomposition to
permutation matrices, where all the diagonal elements of D′

are kept as 0 since no intra-rack traffic will use the OXC.

Fig. 3. Example on determining OXC configuration with BvN decomposition.

In Fig. 3, D′ is decomposed to 6 permutation matrices, each
of which is with a coefficient. A larger coefficient suggests that
more data in D′ can be transmitted directly through the OXC
ports configured according to the corresponding permutation
matrix. Hence, allocating physical connections through the
OXC to rack pairs in proportion to the permutation matrices’
coefficients helps to reduce the durations of pull/push steps of
the DML jobs. For instance, the OXC in Fig. 3 connects 4 ports
to each ToR switch and each permutation matrix consumes 2
ports on each ToR switch. Therefore, we can only select 4

2 = 2
matrices to configure the OXC, and the coefficients of the first
two permutation matrices suggest that they should be selected
(i.e., 664

1486 × 2 ≈ 1 and 478
1486 × 2 ≈ 1).

The time complexity of Algorithm 1 is O(
∑
i∈J
|Wi|+ |J | ·

(1 + log2 |J | + |Rs| + |Rs| · log2 |Rs|) + |Rs|2 + |NOXC| +
|Rs|2.5 ·NToR), where O(|Rs|2.5 ·NToR) is the complexity of
the BvN decomposition algorithm in Line 27.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

Our simulations consider both small-scale and large-scale
scenarios. The small-scale simulations address an all-optical
DCN that consists of {2, 4, 6} racks, where half of the ToR
switches are based on PDP, each of which can accommodate
the INC tasks of two PS’ at most. Each ToR switch connects
to the OXC via four 10-Gbps ports. The server pool of each
rack is conceptualized as a cluster with [50, 80] GPUs, [20, 30]
CPUs, and [1.5, 2] GB of memory, while the actual amounts
of IT resources in each server pool are determined based
on the setting of DML jobs in each simulation. Each small-
scale simulation considers the cases with and without INC.
Specifically, the case without INC is only solved with the
MILP in Section II to minimize the longest JCT, while that
with INC is solved with the MILP, our heuristic based on
WCG, and two other benchmarks. Here, one benchmark is
based on random worker placement (RWP), which places the
workers of DML jobs in available racks randomly, and the
other uses single worker grouping (SWG), which first sorts

(a) 2 racks

(b) 6 racks

Fig. 4. Small-scale simulation results.

all the workers in descending order of their data transfer sizes
and then put |Rs| workers in one group in sorted order.

The large-scale simulations only consider WCG, RWP, and
SWG, and address an all-optical DCN with 64 racks, where
PDP switches are still half of the ToR switches. Each PDP
ToR switch can accommodate the INC tasks of 5 PS’ at most.
The OXC is in 384×384, and thus each ToR switch connects
to it via 12 10-Gbps ports. The IT resources in the server pool
of each rack are 200 GPUs, 130 CPUs, and 60 GB memory.

In all simulations, the data transfer size of one pull/push step
for a worker-PS pair is assumed to be within [92, 552] MB, by
fitting the parameter sizes of some well-known DML models
(e.g., ResNet-50, ResNet-152, AlexNet and VGG-Net) [21].
The numbers of GPUs and CPUs occupied by each worker
are randomly set within [1, 32] and [1, 8], respectively, and the
IT resources required by a worker is proportional to its data
transfer size. The simulations run on a server with 2.10 GHz
Intel(R) Xeon(R) Silver 4110 CPU and 30 GB memory, and
the software environment is PyCharm-2023.3.5 with Gurobi
11.0.1 and Python with tensorflow 2.3.0. To ensure statistical
accuracy, the simulation result of each data point is obtained
by averaging the results of 10 independent runs.

B. Performance Analysis
Fig. 4 shows the results of small-scale simulations, where

the number of workers for each DML job is within [1, 4]. By
comparing the results of the MILPs for cases with and without
INC, we find that the introduction of INC significantly reduces
the longest JCT of DML jobs, and the reduction becomes more
pronounced when the scale of all-optical DCN increases. As
for the case with INC, WCG always approximates the MILP
the best among the heuristics. When there are only two racks,

SWG performs similarly as WCG because their principles are
similar when the number of racks is very limited, but the
difference between them becomes significant when the number
of racks increases to 6. This is because WCG tries to place
all the workers of a DML job in one rack, thereby minimizing
inter-rack traffic and making it easier to find the best location
for their PS to explore the benefit of INC. The algorithms’
running time are listed in Table II, which indicates that the
heuristics runs much faster than the MILPs and WCG uses the
shortest running time, further confirming its time-efficiency.

Fig. 5 plots the results of large-scale simulations, which do
not consider the MILPs due to their computational complexity.
Here, we have 64 racks in the all-optical DCN, and increase
the number of workers for each job to [4, 16] and [16, 64].
WCG still reduces the longest JCT better than SWG and RWP.
Moreover, the gaps between WCG and the two benchmarks
become significantly larger than those in Fig. 4, suggesting that
WCG can explore the advantages of the symbiosis of INC and
AOI for DML better when the network scale increases. Finally,
we notice that the gaps in Fig. 5(b) are smaller than those in
Fig. 5(a). This is because when there are more workers in each
DML job, it becomes more difficult for WCG to put all the
workers of a DML job in one rack to reduce inter-rack traffic,
which offsets its advantage to a certain extent.

TABLE II
RUNNING TIME OF SIMULATIONS (SECONDS)

Number
of racks MILP INC MILP Non INC WCG SWG RWP

2 1.651 0.705 0.165 0.669 0.473
4 22.145 2.799 0.314 0.718 0.581
6 1555.911 30.615 0.349 0.840 1.305
64 − − 0.674 9.488 8.486

V. CONCLUSION

In this paper, we studied how to schedule a batch of parallel
DML jobs in an all-optical DCN equipped with PDP ToR
switches that support INC. We first formulated an MILP model
to optimize the scheduling of DML jobs for the cases with and
without INC, to minimize the longest JCT, and then proposed
a heuristic based on WCG to tackle the case with INC
quickly. Extensive simulations confirmed that our proposals
can effectively explore the mutual benefits of INC and AOI
and reduce the longest JCT better than the benchmarks.

ACKNOWLEDGMENTS

This work was supported by the NSFC project 62371432.

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] M. Ghobadi et al., “Projector: Agile reconfigurable data center intercon-
nect,” in Proc. of ACM SIGCOMM 2016, pp. 216–229, Aug. 2016.

[3] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient data center networks,” IEEE Commun. Mag., vol. 58,
pp. 86–92, Jan. 2020.

[4] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[5] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

(a) [4, 16] workers in each DML job

(b) [16, 64] workers in each DML job

Fig. 5. Large-scale simulation results (64 racks).

[6] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[7] Z. Zhu et al., “Impairment- and splitting-aware cloud-ready multicast
provisioning in elastic optical networks,” IEEE/ACM Trans. Netw.,
vol. 25, pp. 1220–1234, Apr. 2017.

[8] H. Yang and Z. Zhu, “Traffic-aware configuration of all-optical data
center networks based on Hyper-FleX-LION,” IEEE/ACM Trans. Netw.,
vol. 25, pp. 1220–1234, Apr. 2024.

[9] J. Verbraeken et al., “A survey on distributed machine learning,” ACM
Comput. Surv., vol. 53, pp. 1–33, Mar. 2020.

[10] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine
datacenter fabrics,” in Proc. of IEEE HOTI 2013, pp. 71–74, Aug. 2013.

[11] H. Yang, Z. Zhu, R. Proietti, and B. Yoo, “Which can accelerate
distributed machine learning faster: Hybrid optical/electrical or optical
reconfigurable DCN?” in Proc. of OFC 2022, pp. 1–3, Mar. 2022.

[12] Y. Jiang et al., “A unified architecture for accelerating distributed DNN
training in heterogeneous GPU/CPU clusters,” in Proc. of OSDI 2020,
pp. 463–479, Nov. 2020.

[13] L. Liu et al., “Online job scheduling for distributed machine learning
in optical circuit switch networks,” Knowl. Based Syst., vol. 201, p.
106002, Jun. 2020.

[14] A. Feng et al., “In-network aggregation for data center networks: A
survey,” Comput. Commun., vol. 198, pp. 63–76, Jan. 2023.

[15] X. Xie, H. Yang, and Z. Zhu, “P4INC-AOI: When in-network comput-
ing meets all-optical interconnect for adaptive and low-latency optical
DCN,” in Proc. of OFC 2023, pp. 1–3, Mar. 2023.

[16] Polatis Series 7000 Software-Defined Optical Circuit Switch. [Online].
Available: https://www.polatis.com/series-7000-384x384-port-/software-
controlled-optical-circuit-switch-sdn-enabled.asp.

[17] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep
learning,” in Prof. of NSDI 2019, pp. 485–500, Feb. 2019.

[18] H. Cui et al., “GeePS: scalable deep learning on distributed GPUs with a
GPU-specialized parameter server,” in Proc. of EuroSys 2016, pp. 1–16,
Jan. 2016.

[19] H. Ryser, Combinatorial Mathematics. Rahway, NJ: The Mathematical
Association of America, 1965.

[20] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in Prof. of SPAA
2015, pp. 294–303, Jun. 2015.

[21] Y. Li, C. Fan, X. Zhang, and Y. Chen, “Placement of parameter server
in wide area network topology for geo-distributed machine learning,” J.
Commun. Netw., vol. 25, pp. 370–380, Jun. 2023.

