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Abstract—The past decade has witnessed a tremendous stride 
toward automated and intelligent optical networking thanks to 
the revolutionary development in machine learning (ML). Among 
the various ML applications for optical networks, quality-of-
transmission (QoT) estimation outstands as a fundamental yet 
challenging task, and therefore, has grabbed intensive research 
interests. This paper provides an overview of ML-aided QoT es-
timation. We first describe several representative QoT estimation 
models. Then, we elicit challenges related to model generalization 
ability and review the state of the art in this perspective.

Index Terms—Quality-of-transmission (QoT) estimation, ma-
chine learning, model generalization.

I. INTRODUCTION

Quality-of-transmission (QoT) estimation is an imperative 
task for securing the correct operations of optical networks. 
Accurate QoT estimation facilitates early detection of per-
formance degradations by constant monitoring of lightpaths’ 
health degrees while allowing for allocation of just enough 
margins to improve resource efficiency. A s o ptical networks 
scale both horizontally (e.g., larger topologies of multiple 
heterogeneous domains) and vertically (adoption of novel tech-
nologies such as elastic optical networking and space-division 
multiplexing), this task becomes increasingly challenging and 
remains a focal point for the research community.

Traditional QoT estimation methods generally fall into two 
categories: the split-step Fourier method (SSFM) and the 
Gaussian noise (GN) model. The SSFM method is an ana-
lytical model that calculates lightpath QoT through complex 
iterative computations. This method offers the highest accu-
racy but at the cost of high computational complexity, mak-
ing it impractical for real-time applications. The GN model 
simplifies t he m athematical c alculations b y u sing statistical 
methods. While this approach reduces computation time, it 
trades off the prediction accuracy and necessitates increased 
provisioning margins to account for the prediction errors.

Recently, thanks to the significant advancements in pro-
grammable data-plane technologies, the application of AI in 
optical networks has become more convenient and efficient 
[1].The reviving of artificial i ntelligence ( AI) a nd machine 
learning (ML) has brought up new opportunities for meeting
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the aforementioned challenges by exploring data-driven ap-
proaches. AI/ML enables learning complex functions directly
from data without explicit programming or understanding of
the inherent principles of the target systems. This makes
AI/ML particularly useful for QoT estimation tasks, as re-
vealed by numerous previous studies.

However, the data-driven nature of ML-aided QoT esti-
mation designs makes their performance highly dependent
on the amount and quality of data. Consequently, ML-based
designs often suffer from scalability or generalization issues,
in circumstances where collecting a large amount of optical
performance monitoring (OPM) data is expensive or network
conditions are intricate and dynamic. Enhancing model gen-
eralization ability thus plays a vital role in paving the path
toward the practical deployment of ML-aided QoT estimators
in optical networks. Potential solutions include transfer learn-
ing approaches that ease the training effort on new tasks by
reusing knowledge learned from existing tasks, active learning
approaches that optimize the efficiency of data collection,
and meta learning designs aiming at extracting generalizable
knowledge across tasks. In this paper, we overview ML-aided
QoT estimation, and particularly, review the state of the art
from the perspective of model generalization.

II. ML-AIDED QOT ESTIMATION

QoT estimation underpins the following network control and
management tasks: i) network design and planning, where QoT
estimation can help determine the optimal routes, wavelength
allocation, amplifier locations, and so on; ii) performance
monitoring and assurance, where QoT estimation enables
real-time and cost-effective monitoring of signal transmission
quality and proactive adjustment of lightpath configurations
to secure consistent performance levels; iii) fault diagnosis
and recovery, where QoT estimation can help identify fault
locations and develop effective recovery strategies. The most
common application of QoT estimation lies in network design
and planning, in particular, to estimate the QoT and thereby
the feasibility of the unestablished lightpaths. QoT estimation
can be realized in the form of classification or regression.
Classification involves classifying whether relevant communi-
cation quality indicators [such as optical signal-to-noise ratio
(OSNR), and bit error rate (BER)] meet the transmission
requirements according to preset thresholds. Regression, on
the other hand, directly predicts the values of communication
quality indicators. Metrics like mean squared error (MSE) are



generally used to calculate the discrepancy between predicted
and actual values, and in turn to measure model performance.

When performing QoT estimation, a model requires input
features that can characterize a particular lightpath. To en-
sure that the data can adequately describe the lightpath and
that the trained model has strong representation capabilities,
researchers in previous studies have opted to use multiple end-
to-end communication features. Some of the features chosen
by researchers are shown in Table I.

TABLE I
QOT FEATURES

Features Description

Num of links [km] Total links that a lightpath traverses, a link
consists of several spans

Num of spans [km] Total spans of a lightpath
Total length [km] The length of a lightpath, representing the

communication distance between two end
nodes

Average link length [km] Average distance of links used by a
lightpath

Maximum link length
[km]

Distance of the longest link

Launch Power [dBm] Signal power injected into the network,
affecting the communication distance and

NLI
Modulation format Determines a signal’s tolerance to noise

Bit rate [bit/s] Affects a signal’s tolerance to noise

Many studies have been devoted to applying ML to QoT
estimation in optical networks, achieving promising results,
as summarized in Table II. K-nearest neighborhood (KNN) is
one of the simplest supervised learning methods. It classifies
samples by calculating the distances between samples (using
the input features) and by assigning a sample the most frequent
label within the K nearest neighbors. In [2], the authors used
K = 1 and K = 10, and examined the prediction results
under the Euclidean distance, cosine distance, and weighted
Euclidean distance. The final results showed that the highest
prediction accuracy was achieved with K = 1, and among
the different distance metrics, the weighted Euclidean distance
performed the best. The authors also used a support vector
machine (SVM) for QoT estimation. SVM finds the optimal
hyperplane through kernel functions for regression, which can
be seen as a generalization of KNN. The authors considered
linear, quadratic, and cubic SVM, along with Gaussian kernels
with γ = 1 and γ = 3. The final results indicated that cubic
SVM performed the best among all cases. In [3], the authors
used the random forest method for QoT estimation. The
random forest algorithm consists of multiple decision trees,
each analyzing the relationship between input features and
results to form the corresponding model, thus classifying the
input samples. In the random forest algorithm, each decision
tree randomly selects features to ensure diversity and produces
a result that is then determined by majority voting. The authors
considered numbers of estimators of 1, 5, 25, 100, and 500.

The final results showed that more estimators resulted in better
performance but also increased training and prediction time.

Neural networks (NNs) are the most popular ML algorithms
in recent years. An NN fits complex problems through training
data iteratively and can work in an end-to-end manner. In [4],
the authors used NNs for QoT estimation and proposed a time-
sequence QoT estimation model based on recurrent neural
networks (RNNs). The results showed that NNs achieved
the highest prediction accuracy of 99.56% when using all
features, and the accuracy decreased as features were reduced.
When considering time sequences, long short-term memory
(LSTM), gated recurrent unit (GRU), and encoder-decoder
LSTM models were used. The results indicated that GRU
performed the best, and more data are needed to train higher-
performance models.

In [5], the authors proposed a convolutional neural net-
work (CNN) based network-wide QoT estimation method to
improve the prediction efficiency in large-scale deployments.
They utilized CNN’s ability to extract network-level feature
information from network matrices for prediction. The re-
sults showed that QoT estimation accuracy exceeding 98%
across different network topologies was achieved. Compared
to CNN, graph neural networks (GNNs) can extract features
from irregular graphs such as network topology, thus gaining
significant attention in recent years. In [6], the authors used
deep graph convolutional neural network (DGCNN) to model
QoT problems through subgraphs and trained GNNs using
the features of in-service lightpaths’ graph data. This method
not only predicted QoT for unestablished lightpaths but also
inferred whether new lightpath deployments would affect
existing ones. The results showed that GNNs achieved over
92% accuracy, while that of traditional DNNs only reached
77%.

However, we can find that all the aforementioned ML
methods require the same initial step, which is the use of
data to train the model. For simpler models like KNN, SVM,
and RF, less training data are required, but their ability to fit
problems is also weaker. Meanwhile, for models like NNs, the
more complex the model is, the better representation capability
they have. However, a more complex model also implies more
data for training to ensure performance. Specifically, when the
data distribution of the actual application domain differs from
that of the source domain, a model’s expected performance
can significantly decrease. In practice, researchers aim to train
sufficiently powerful models to enhance problem representa-
tion capabilities (for QoT, this means improving prediction
accuracy) while ensuring the model’s generalization ability
to different data distributions (i.e., unseen conditions). This
remains a significant challenge for ML-aided QoT estimation
that hinders its practical application.

III. MODEL GENERALIZATION

In practical optical networks, data collection on-site requires
the deployment of multiple OPM devices or modules and
telemetry services that constantly stream OPM data to the
centralized control plane, which incurs significant costs. On



TABLE II
METHODS FOR QOT ESTIMATION

Methods Classification/Regression Metrics Feature Result Ref.

KNN Classification OSNR Num of hops; num of spans; total length;
average link length; maximum link length;

average span attenuation; average
dispersion; modulation format

Accuracy=96.47% when K = 1 and
accuracy=92.93% when K = 10

using Euclidean distance

[2]

Random Forest Classification BER Num of links; total length; longest link
length; traffic volume; modulation format

Using 1, 5, 25, 50, 100, 500
estimators, and the accuracy is 92%

with one estimator and 96% with five
types.

[3]

SVM Classification OSNR Num of hops; num of spans; total length;
average link length; maximum link length;

average span attenuation; average
dispersion; modulation format

3D SVM has better performance
(accuracy=96.62%) than others while
Gaussian kernel γ = 3 is better than

γ = 1 (93.05% and 91.79%,
respectively)

[2]

ANN, RNN Classification SNR link length; span length; number of spans;
modulation format; channel power; data

rate

The accuracy of ANN is 99.56% with
0.276 ms computation time and the

RNN’s prediction performance
degrades with the forecast horizon

increase

[4]

DCNN Classification SNR Length; Num of spans; BER; modulation
format

Using two matrix to represent the
feature and estimate the network-wide

QoT, best accuracy is 99.52%

[5]

GNN Classification SNR Total length; longest length; starting slot;
num of slots; modulation format; num of

EDFA; num of links; num of adjacent
links; overall slots; established

connections’ BER

Using the information of the
in-service lightpath around the

unestablished lightpath. The accuracy
of the GNN is between 92% and

100%, which outperforms the DNN

[6]

the other hand, using synthetic data raises concerns about the
deficiency of the dataset‘s diversity and the generalization
ability of the models trained on such data. Under these
circumstances, developing a model that performs well while
having strong generalization capabilities for unseen conditions
is an urgent challenge for applying ML in optical networks and
many efforts have been devoted to improving model general-
ization. In this section, we review several works dedicated
to improving the generalization ability of ML-based QoT
estimators.

A. Transfer Learning

Transfer learning is an ML technique where a model devel-
oped for a particular task (source task) is reused as the starting
point for a model on a different task (target task). This method
is particularly useful when the target tasks have limited data,
as it allows to leverage the knowledge gained from the source
tasks to improve performance on the target tasks.

Transfer learning is particularly well-suited to the charac-
teristics of QoT estimation tasks in optical networks. Conse-
quently, numerous studies have focused on utilizing transfer
learning to improve model generalization ability in QoT esti-
mation tasks, such as [7]–[10], [13].

In [7], the authors considered that fluctuations near the op-
erating point of network elements could introduce uncertainty
in the nominal values of collected data, leading to generalized
signal-to-noise ratio (GSNR) uncertainty and increased system
margins. The authors pre-trained a model with in-service
network data and then applied transfer learning to reuse the

pre-trained model in an unused network environment, thereby
reducing GSNR calculation uncertainty. Experimental results
showed that the model’s output GSNR values fit well with
the actual conditions and significantly reduced the discrepancy
between predicted GSNR and nominal values.

In [8], the authors proposed an evolutionary algorithm-
enhanced transfer learning method for QoT estimation in
multi-domain elastic optical networks. They utilized a genetic
algorithm to optimize the neural network architecture and
set transfer weights based on source and target tasks to
improve method performance. After pre-training the model,
they attempted to freeze certain structures of the pre-trained
model and added untrained hidden layers in the new model
to enhance the model’s performance. The genetic algorithm
was used to find the optimal model architecture for knowledge
transfer, maximizing the model’s performance increment. The
final results showed that, while achieving 95% accuracy,
the proposed method could reduce up to 13× training data
compared with the traditional methods.

The work in [9] focused on selecting samples from the
source and target domain when using transfer learning, thereby
improving model performance with less data. The authors
designed a sample distribution matching model to filter data
from the source domain and find samples that match the
target domain’s data distribution, enhancing the pre-trained
model’s performance in the target domain. Different sample
matching algorithms were designed and their pros and cons
were discussed. The results showed that the proposed method
saved fine-tuning samples of up to 28.5% compared with



TABLE III
GENERALIZATION

Methods Model Feature Result Ref.

Transfer learning DNN Power; ASE; NLI;
frequency; spans

Trained the model with in-service network data and reduced the GSNR
uncertainty of the unused network with transfer learning. The
experimental results showed that the average margin was reduced by 0.27
dB.

[7]

Transfer
Learning

ANN Num of links; modulation
format; Amplifiers gain

Genetic algorithm was used to search the optimal model architectures and
transfer weight, the proposed approach can reduce the training data by up
to 13 times compared to the conventional method in the same
performance.

[8]

Transfer learning ANN Total length; maximum
link length; num of hops;

num of spans; num of
adjacent channels

Proposed a sample-distribution-matching algorithm to find the suitable
samples for the target domain, results showed that proposed approach
outperforms the traditional transfer learning model and saves more than
28.5% fine-tuning samples

[9]

Transfer learning ANN Launch power;
wavelength; transmission

distance

Proposed a neuron-level transfer learning approach which uses PSO
algorithm to determine the trainable and frozen neurons of ANN, the
proposed approach achieved better performance than conventional transfer
learning.

[10]

Domain
adaptation

SVM; logistic
regression; RF

Total length; num of
traversed links; maximum

link length; amount of
transmitted traffic;

modulation format; traffic
volume; guardband size

Proposed a domain adaptation approach to compare with the approach
that simply joins the target and source domain data together, the domain
adaptation approach outperformed the normal ML method and decreased
the dataset distribution.

[11]

Active learning Gaussian
processes

Num of links; total
length; maximum link
length; traffic volume;

modulation format

Active learning were used to search for the next training samples. The
training data were decreased (at least 5% and up to 75%) to achieve the
same performance.

[12]

Active &
transfer learning

DNN Power; ASE noise; NLI;
spans; distance; GSNR

Active learning were used when choosing the data on both the
pre-training and fine-tuning stages. Results showed that active learning
enhanced the performance of the model when using transfer learning

[13]

Domain
adaptation &

active learning

Gaussian
processes

Total length; maximum
link length; num of

traversed links; amount of
transmitted traffic; traffic

volume; modulation
format; guardband size

Domain adaptation and active learning were used for QoT estimation and
made a comparison between these two approaches. The active learning
method requires a few dozen samples, whereas a few hundred samples
are needed for domain adaptation

[14]

Meta learning ANN Num of spans; Maximum
span length; average span
length; signal power; link

length; chromatic
dispersion; NLI
parameter, etc.

Meta learning-based approach has better performance and robustness in
the presence of different parameter uncertainties. With parameter
uncertainty increasing, the RMSE of the traditional model was 1.22 dB
while that of the meta learning model was 0.83 dB.

[15]

Meta Learning ANN Total length; longest link
length; num of spans;

num of hops; wavelength;
adjacent channels

Conventional training, transfer learning, and meta learning were
compared in parallel. The results showed that meta learning has better
data-saving ability compared with transfer learning (by 55%).

[16]

Meta Learning CNN Constellation grayscale
maps

Proposed an auxiliary task for meta learning to enhance the training
convergence. Modulation format identification accuracy reached 100% as
an auxiliary task and QoT estimation’s MSE was 0.18 dB.

[17]

Continual
Learning

Invariant CNN Channel power; noise
figure of spans; EDFA

gain of spans; Span
length

Enabled variation of link feature parameter for QoT estimation using
invariant CNN. A joint training algorithm was proposed to alleviate the
time and feature-length dependency while continual learning framework
was used to perform the highest efficiency and lowest training cost of
QoT estimation

[18]

Composable ML ANN, RNN Launch power; symbol
rate; wavelength; channel
loading; physical length;
attenuation coefficient;
amplifier gain; noise

figure

Proposed a composable ML method to generalize different tasks in the
same domain. Results showed that MAE below 1.03 dB was achieved

[19]



traditional transfer learning methods.
Another evolutionary transfer learning method was pro-

posed by [10]. Compared to [8], the authors of [10] proposed
neuron-level transfer learning. This method used a particle
swarm optimization (PSO) algorithm to determine the train-
able and frozen neurons of an NN, rather than layers of NN,
as in traditional transfer learning methods. The results showed
that the proposed method achieved higher accuracy compared
with traditional layer-level transfer learning, and also improved
the model’s reliability and throughput in the application phase.

Domain adaptation (DA) is a branch of transfer learning
that focuses on improving the performance of a model on a
target domain by leveraging knowledge from a related source
domain. This technique is particularly useful when there is a
shift in the distribution of data between the source and target
domain. In [11], the authors proposed to use DA techniques
on target datasets to address the issue of data scarcity or
unavailability. They introduced two DA methods based on
different available data and compared them with ordinary
models. The results showed that these two methods performed
better than simply joining the target domain and source domain
data.

Domain adaptation and active learning are both methods to
enhance performance on small datasets. In [14], the authors
compared the two methods and showed that the two methods
outperformed traditional ML methods on limited datasets. As
the number of samples increased, the prediction performance
of both methods improved significantly, with active learning
requiring fewer samples than domain adaptation.

A composable ML framework has been proposed in [19],
aiming at generalizing ML-aided cognitive applications. The
authors introduced three fundamental functional modules cor-
responding to initialization, feature extraction, and model
inference, trained in an end-to-end manner. The authors found
that composable ML can be generalized across different tasks
within the same domain, such as QoT estimation for different
lightpaths. Experimental results demonstrated the robust gener-
alization ability of composable ML, achieving a mean absolute
error (MAE) of only 1.06 dB in QoT estimation tasks.

Transfer learning and domain adaptation both aim to lever-
age the common knowledge from different data distributions
to train models. By learning the shared knowledge between
different distributions, they reduce the need for extensive
training time and data in other specific distributions, thus im-
proving the generalization of machine learning (ML) models.
Typically, researchers combine various strategies with transfer
learning or domain adaptation, such as selective sampling of
data, choosing optimal model architectures, or refining training
methods. This combination of techniques enables the models
to perform better across diverse environments while requiring
fewer labeled examples.

B. Active Learning

Active learning is a type of ML where the algorithm selects
the most informative data points from which to learn. This
approach is particularly useful when labeled data is scarce or

expensive to obtain, as it aims to maximize model performance
with a minimal amount of labeled data.

Due to the need to deploy probes for data collection in
optical networks, the cost of data collection is expensive. In
[12], to reduce the number of probes in optical networks, the
authors used active learning to train Gaussian processes for
QoT estimation. Using this method, the QoT estimator can
iteratively select the most suitable samples for model training,
thereby training a high-performance model with the fewest
samples. By using active learning, the probability distribution
output by the Gaussian processes is input into an acquisition
function, which is then used to find the most appropriate next
training sample. The results showed that this method could
significantly reduce the number of training samples (by at least
5% and up to 75%) while achieving an accuracy comparable
to that of conventional offline ML methods.

Active learning and transfer learning were combined in
[13], which not only reduces the number of samples needed
for model training but also enables the model to be used in
networks with different configurations. The authors pointed
out that directly training with limited labeled data could
lead to overfitting and degrade model performance. Their
proposed method uses active learning to find the optimal high-
quality samples for model training in both the pre-training and
fine-tuning stages and then applies the pre-trained model to
QoT estimation tasks in other networks. They compared the
effectiveness of transfer learning without using active learning
to select samples during the fine-tuning stage. The final results
showed that using active learning throughout both stages was
more effective than using it only in the pre-training stage,
demonstrating the effectiveness of active learning in both
stages.

Different approaches to enhance model generalization and
data-use efficiency have been explored. In [18], the authors
identified two challenges faced by ML-based QoT estimation:
the varying number of transmission feature parameters and
data distribution drift. To address these challenges, they pro-
posed an invariant CNN-based estimation model. This model
encodes link parameters of different lengths into a fixed-length
representation and quickly adapts to different data distributions
using limited data. The authors introduced a joint training
algorithm to mitigate the model’s dependence on time and fea-
tures and employed a continual learning workflow to achieve
maximum efficiency in QoT estimation with minimal training
cost. The results demonstrated that the proposed method’s
99th percentile prediction error average was less than 1.0 dB
and showed stronger stability compared with benchmarks over
different periods.

Active learning is machine learning focused on selecting
the most efficient training samples. Through sample selection
algorithms, it identifies and labels the most suitable samples
for the next training iteration, maximizing training efficiency.
Compared to passively using large amounts of randomly
selected data, active learning significantly reduces the number
of training samples required. Many researchers employ active
learning frameworks to adaptively choose samples for real-



time training in different scenarios, making it an effective
strategy to enhance model generalization.

C. Meta Learning

Meta learning, also known as “learning to learn”, aims to
develop models that can learn new tasks more efficiently by
leveraging prior experience. Instead of focusing on learning to
perform a single task, meta-learning algorithms aim to acquire
knowledge that can be generalized across multiple tasks. Meta
learning is widely used for few-shot learning enabling models
to achieve considerable performance with very few samples
available. This characteristic is highly applicable in the data-
scarce environment of optical networks. Consequently, re-
searchers are dedicated to using meta learning to improve
model generalization under conditions of data scarcity.

In [15], the authors aimed to address the issue of parameter
uncertainty in physical layer impairment modeling by using
online adaptation. They sought to improve the robustness of
the model and its effective adaptation to limited real system
data through meta learning. The authors experimented with
two meta learning algorithms, model-agnostic meta-learning
(MAML) and Reptile, and compared their performance with
traditionally trained models. The results showed that tradi-
tional models performed the worst under all levels of pa-
rameter uncertainty, while meta learning methods maintained
stability as uncertainty increased.

Since both transfer learning and meta learning address the
issue of limited data, the authors in [16] compared ordinary
NN, transfer learning based, and meta learning based methods.
The results demonstrated that, when pre-trained on one net-
work and applied to different networks with scarce data, both
transfer learning and meta learning outperformed ordinary
methods. Furthermore, when comparing transfer learning with
meta learning, the experiments revealed that to achieve the
same model performance, meta learning could reduce the data
size by approximately 55% compared with that required by
transfer learning. This indicates that transfer learning requires
more data for sufficient knowledge transfer, whereas meta
learning exhibits a stronger data generalization ability during
the pre-training stage.

In [17], the authors introduced the concept of auxiliary tasks
to help meta learning converge faster and compared standard
meta learning with meta learning incorporating auxiliary tasks.
In their experiments, they used modulation format identifi-
cation as the auxiliary task to improve the convergence of
the QoT model training. The results showed that with the
auxiliary task, the accuracy of modulation format identification
could reach 100%, and the lowest QoT estimation MSE could
be 0.18 dB. Additionally, in the fine-tuning stage, only four
samples were needed to achieve remarkable generalization
ability and adaptability.

Meta learning can be viewed as a specialized training
approach that enables a model to achieve rapid convergence
using a small number of training samples in specific tasks,
allowing it to learn distinctions between different tasks. Re-
searchers leverage its fast convergence and multi-task com-

patibility to enhance model generalization. This makes meta
learning particularly effective in improving the performance of
models when faced with varied tasks and limited data, which is
critical in the dynamic and data-scarce environment of optical
networks.

CONCLUSION

Improving model generalization ability is a crucial pathway
for the practical deployment of ML applications in optical
networks. In this article, we summarized recent efforts on
ML-aided QoT estimation that particularly focus on model
generalization, leveraging techniques such as transfer learning,
active learning, and meta learning.

The generalization of models has consistently been a critical
challenge for the practical deployment of machine learning
(ML) methods in optical networks. Ensuring model generaliza-
tion is essential for transitioning from experimental phases to
in-filed applications. First, in current research, most simulation
and field experiments are conducted on similar or identical
network environments, which presents significant challenges
for enhancing the model’s generalizability. In future studies,
researchers could explore novel methods to ensure that ML
models can meet experimental expectations across various
network environments and data distributions. Secondly, in
the context of automated and intelligent optical networks,
reducing computational resources and time costs is an im-
portant consideration. One potential direction is to investigate
the use of multimodal approaches or other models that can
simultaneously address multiple tasks (e.g., fault management,
QoT prediction, routing, spectrum assignment, and others),
exploring ways to develop a single model capable of solving
multiple problems efficiently.

REFERENCES

[1] B. Niu, J. Kong, S. Tang, Y. Li, and Z. Zhu, “Visualize Your IP-Over-
Optical Network in Realtime: A P4-Based Flexible Multilayer In-Band
Network Telemetry (ML-INT) System,” IEEE Access, vol. 7, pp. 82 413–
82 423, 2019.

[2] R. M. Morais and J. Pedro, “Machine Learning Models for Estimating
Quality of Transmission in DWDM Networks,” J. Opt. Commun. Netw.,
vol. 10, no. 10, p. D84, Oct. 2018.

[3] C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, “Machine-
Learning Method for Quality of Transmission Prediction of Unestab-
lished Lightpaths,” J. Opt. Commun. Netw., vol. 10, no. 2, p. A286,
Feb. 2018.

[4] S. Aladin, A. V. S. Tran, S. Allogba, and C. Tremblay, “Quality
of Transmission Estimation and Short-Term Performance Forecast of
Lightpaths,” J. Lightw. Technol., vol. 38, no. 10, pp. 2807–2814, May
2020.

[5] P. Safari, B. Shariati, G. Bergk, and J. K. Fischer, “Deep Convolutional
Neural Network for Network-wide QoT Estimation,” in Proc. Conf. Opt.
Fiber Commun. (OFC), 2021, p. Th4J.3.

[6] G. Savva, T. Panayiotou, I. Tomkos, and G. Ellinas, “Deep Graph
Learning for QoT Estimation of Unseen Optical Sub-Network States:
Capturing the Crosstalk Impact on the In-Service Lightpaths,” J. Lightw.
Technol., vol. 40, no. 4, pp. 921–934, Feb. 2022.

[7] I. Khan, M. Bilal, M. Umar Masood, A. D’Amico, and V. Curri,
“Lightpath QoT Computation in Optical Networks Assisted by Transfer
Learning,” J. Opt. Commun. Netw., vol. 13, no. 4, p. B72, Apr. 2021.

[8] C.-Y. Liu, X. Chen, R. Proietti, and S. J. B. Yoo, “Performance Studies
of Evolutionary Transfer Learning for End-to-End QoT Estimation in
Multi-domain Optical Networks [Invited],” J. Opt. Commun. Netw.,
vol. 13, no. 4, p. B1, Apr. 2021.



[9] Z. Gu, T. Qin, Y. Zhou, J. Zhang, and Y. Ji, “Sample-distribution-
matching-based Transfer Learning for QoT Estimation in Optical Net-
works,” J. Opt. Commun. Netw., vol. 15, no. 9, p. 649, Sep. 2023.

[10] Y. Zhou, Z. Gu, J. Zhang, and Y. Ji, “Evolutionary Neuron-level Transfer
Learning for QoT Estimation in Optical Networks,” J. Opt. Commun.
Netw., vol. 16, no. 4, p. 432, Apr. 2024.

[11] C. Rottondi, R. Di Marino, M. Nava, A. Giusti, and A. Bianco, “On the
Benefits of Domain Adaptation Techniques for Quality of Transmission
Estimation in Optical Networks,” J. Opt. Commun. Netw., vol. 13, no. 1,
p. A34, Jan. 2021.

[12] D. Azzimonti, C. Rottondi, and M. Tornatore, “Reducing Probes for
Quality of Transmission Estimation in Optical Networks with Active
Learning,” J. Opt. Commun. Netw., vol. 12, no. 1, p. A38, Jan. 2020.

[13] H. Tariq, F. Usmani, I. Khan, M. U. Masood, A. Ahmad, and V. Curri,
“Iterative Transfer Learning Approach for QoT Prediction of Lightpath
in Optical Networks,” in Int. Conf. Transparent Opt. Netw. (ICTON),
Jul. 2023, pp. 1–4.

[14] D. Azzimonti, C. Rottondi, A. Giusti, M. Tornatore, and A. Bianco,
“Comparison of Domain Adaptation and Active Learning Techniques for
Quality of Transmission Estimation with Small-sized Training Datasets
[Invited],” J. Opt. Commun. Netw., vol. 13, no. 1, p. A56, Jan. 2021.

[15] X. Liu, H. Lun, L. Liu, Y. Zhang, Y. Liu, L. Yi, W. Hu, and Q. Zhuge,
“A Meta-Learning-Assisted Training Framework for Physical Layer
Modeling in Optical Networks,” J. Lightw. Technol., vol. 40, no. 9, pp.
2684–2695, May 2022.

[16] S. Lin, Z. Gu, J. Zhang, and Y. Ji, “Meta Learning Based QoT Estimation
of lightpaths with few samples for Optical Networks,” in Proc. Aisa
Commun. Photon. Conf. (ACP), Nov. 2023, pp. 1–4.

[17] Y. Zhang, P. Zhou, Y. Liu, J. Wang, C. Li, and Y. Lu, “Fast Adaptation
of Multi-task Meta-learning for Optical Performance Monitoring,” Opt.
Express, vol. 31, no. 14, p. 23183, Jul. 2023.

[18] Q. Wang, Z. Cai, A. P. T. Lau, Y. Li, and F. Nadeem Khan, “Invariant
Convolutional Neural Network for Robust and Generalizable QoT Esti-
mation in Fiber-optic Networks,” J. Opt. Commun. Netw., vol. 15, no. 7,
p. 431, Jul. 2023.

[19] H. Gao, X. Chen, C. Lu, and Z. Li, “On the Generalization of
Cognitive Optical Networking Applications Using Composable Machine
Learning,” J. Opt. Commun. Netw., vol. 16, no. 6, p. 631, Jun. 2024.




