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Machine learning (ML) based quality-of-transmission (QoT) estimation tools will be desirable for operat-
ing virtual network topologies (VNTs) that disclose only abstracted views of connectivity and resource
availability to tenants. Conventional ML-based solutions rely on laborious human effort on model selec-
tion, parameter tuning and so forth, which can cause prolonged model building time. This paper exploits
the learning-to-learn nature by meta learning to pursue automated provisioning of QoT estimators for
dynamic VNT configuration in optical networks. In particular, we first propose a graph neural network
(GNN) design for network-wide QoT estimation. The proposed design learns global VNT representations
by disseminating and merging features of virtual nodes (conveying transmitter-side configurations) and
links (characterizing physical line systems) according to the routing schemes used. Consequently, the
GNN is able to predict the QoT for all the end-to-end connections in a VNT concurrently. A distributed
collaborative learning method is also applied for preserving data confidentiality. We train a meta GNN
with meta learning to acquire knowledge generalizable across tasks and realize automated QoT estimator
provisioning by fine tuning the meta model with a few new samples for each incoming VNT request. Sim-
ulation results using data from two realistic topologies show our proposal can generalize QoT estimation
for VNTs of arbitrary structures and improves the estimation accuracy by up to 18.7% when compared with
the baseline.
http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Infrastructure-as-a-Service (IaaS) [1] promotes customized and
quality-of-service-assured network service provisioning by con-
figuring virtual network topologies (VNTs), also known as net-
work slices, with isolated bandwidth and computing resources.
One of the most relevant problems on IaaS is VNT embedding
[2], which aims at optimizing the mapping of virtual nodes
and links to the physical substrates. While extensive studies
have been reported in this aspect [2–4], how to realize effective
management of VNTs (performance assessment, capacity maxi-
mization, etc.) remains a nontrivial problem because substrate
network operators typically disclose only limited information
to tenants (VNT managers) for privacy considerations. This is
especially true under the regime of optical spectrum as a service
(OSaaS) driven by the trend of optical network disaggregation,
where operators and tenants manage optical line systems and
transponders separately [5, 6]. Consequently, tenants will urge
specific network control and management services that can in-
terface with both entities (in compliance with data privacy con-
straints) for deriving correct spectrum allocation schemes and

transponder configurations, for instance, relying on a quality-of-
transmission (QoT) estimator for margin optimization.

Over the past years, machine learning (ML) has emerged as a
focal point for the research community targeting optical network
automation and intellectualization (e.g., self-driving optical net-
works [7]). ML allows for learning complex rules directly from
data without explicit programming or understanding of the in-
herent problem structures. Such a data-driven nature of ML
makes it especially appealing for tackling VNT management
tasks. Previous works have demonstrated encouraging results
from ML applications in optical networks [8, 9], such as QoT
estimation [10], fault management [11], routing and spectrum
assignment [12], and VNT embedding [13].

Despite the great stride in ML algorithm and application de-
signs, actuating ML service provisioning for VNTs encounters a
major obstacle of prolonged ML model building time. In partic-
ular, an ML service provisioning pipeline [14] involves multiple
stages such as data collection, model selection, training and op-
eration, many of which rely on laborious human interventions.
Therefore, accelerating ML service establishment becomes highly
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desired for dynamic VNT configuration, where VNTs need to
be configured on demand and timely. Existing works pursue
this goal mainly by leveraging transfer learning approaches to
ease the training procedures [15, 16]. More recently, a Machine-
Learning-as-a-Service (MLaaS) framework has been proposed
for automating ML service provisioning in optical networks
[14]. Nevertheless, ML service automation designs for dynamic
VNT configuration under data confidentiality constraints remain
under explored.

This paper extends our previous work in [17] and presents
a meta-learning-aided automated QoT estimator provisioning
design for dynamic VNT configuration in optical networks. Our
contributions over the previous publication include: (1) propos-
ing a graph neural network-based network-wide QoT estimator
design for VNTs, which can predict the QoT for all the end-to-
end connections in a VNT concurrently and generalize VNTs of
arbitrary topologies; (2) introducing a distributed collaborative
learning method for data privacy conservation in QoT estimator
provisioning; and (3) presenting extensive results by evaluating
the proposed design under various parameter configurations
and application scenarios.

The rest of the paper is organized as follows. In Section 2, we
overview the recent progresses on ML-based QoT estimation and
VNT embedding. Section 3 presents an architecture supporting
ML service automation for dynamic VNT configuration. In
Section 4, we elaborate on the principle of the proposed design.
Section 5 provides the simulation results and related discussions.
Finally, we conclude the paper with Section 6.

2. RELATED WORKS

A. QoT Estimation
QoT estimation is an essential task in optical networks. Tradi-
tional QoT estimation methods rely on mathematical modeling
of the transmission process in the physical layer. One of such
methods is the split-step Fourier method (SSFM) [18], which can
accurately obtain the QoT results of lightpaths through numer-
ical simulation. However, its high computational complexity
makes it unsuitable for providing timely results in real-time sys-
tems. Another method is the Gaussian noise (GN) model [19],
which simplifies fiber nonlinear effects to reduce the complexity
of QoT estimation. The limitation of the GN model lies in its
conservative approximation of nonlinear impairment by con-
sidering full spectrum load conditions and the inaccuracies in
scenarios where the underlying assumption (i.e., the transmitted
signal is Gaussian noise) is violated. Consequently, operators
need to allocate carefully designed margins to compensate for
the inaccurate predictions.

Lately, applying ML for QoT estimation has become the main
stream. Previous studies have employed various ML models,
such as random forest (RF), support vector machine (SVM),
and deep neural networks (DNNs) [20]. In [21], the authors
employed the K-nearest neighbors (KNN) and RF algorithms
for QoT classification tasks, achieving classification accuracies
of 91% and 96%, respectively. In [22], the authors used arti-
ficial neural networks (ANNs) for QoT prediction, achieving
an accuracy of 95% on the testing set. In [23], a comparative
experiment was conducted using SVM and ANN under differ-
ent conditions, with both methods achieving accuracies up to
99%. Because data for optical network applications are often
scarce, it is crucial to consider how to achieve high-performance
models in data-constrained conditions. The authors of [24] ap-
plied transfer learning (TL), which reuses the models trained

on existing networks to reduce the uncertainty of generalized
signal-to-noise ratio (GSNR) estimation for a different network.
The simulation results demonstrated that the average margin
could be reduced from 0.76 dB to 0.58 dB. In [15], an evolu-
tionary transfer learning approach was proposed for predicting
the QoT of cross-domain lightpaths. Comparative studies un-
der various conditions showed that this method could reduce
the required training samples by up to 13× while maintain-
ing an accuracy of over 95%. In [25], Meng et al. proposed a
monitoring-on-demand strategy that leverages Bayesian opti-
mization to determine the channels to be monitored at intermedi-
ate nodes. The experimental results revealed that the proposed
strategy could reduce the required monitoring data by up to
91% compared with pure Gaussian process learning. Similarly,
the authors of [26] generated a model based on Gaussian pro-
cesses and used active learning to dynamically select training
samples to reduce prediction uncertainty. They showed that
the number of training samples required could be reduced by
5% to 75%. In [16], a sample selection method was proposed,
utilizing a filtering algorithm in the pre-training stage to identify
samples better suited for fine-tuning, and thereby, reducing the
number of pre-training samples needed. The results showed
that this method could reduce the required pre-training samples
by up to 28.5% while surpassing the prediction performance
of traditional TL approaches. In [27], the authors proposed an
invariant convolutional neural network along with an evolution-
update framework. This framework permits inputs that consist
of varying numbers of transmission parameters, enabling its
deployment under different link configurations. This approach
also enhances the model’s scalability and reduces the number of
required training samples to a certain extent.

Other works address the QoT estimation problem in different
network scenarios. In [28], the authors studied QoT estimation
in the dynamic network slicing context. They proposed both
centralized and decentralized frameworks, as well as a dynamic
multi-slice QoT-aware framework, to meet the varying QoT
requirements of different slices. The results showed that the
decentralized QoT prediction model outperformed the central-
ized one. The authors of [5] proposed a channel-probing toolkit
consisting of symbol rate variable extended channel probing, fre-
quency sweep, and operation regime detection for OSaaS perfor-
mance assessment. GSNR estimation accuracies of 0.05 and 0.32
dB were achieved for wide-band and narrow-band spectrum
services, respectively. Later on, the same authors investigated
concatenated link performance estimation through channel prob-
ing in a production OSaaS environment [29] and achieved an
estimation accuracy of ±1.4 dB for wide-band services. In [30], a
knowledge-defined networking framework based on distributed
collaborative learning was proposed for multi-domain networks.
By deploying distributed ML models, this approach could learn
the knowledge of different domains while securing domain pri-
vacy. The results indicated that this framework could achieve
performance close to that of baseline models assuming full do-
main visibility. Recently, Yang et al. demonstrated a cascaded
traffic-aware ANN-based link-penalty model that can perform
concurrent QoT prediction for multiple channels with a pre-
cision of ±0.16 dB [31]. In [32], the authors proposed a deep
convolutional neural network for network-wide QoT estimation.
However, this method subjects to scalability and generalization
issues as the employed neural network scales up with the size of
network topology and fails to mine the topological correlations
among lightpaths.
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B. VNT Embedding
In [2], the authors investigated the problem of virtual optical net-
work embedding (VONE) over flexible-grid elastic optical net-
works under both transparent and opaque configurations. They
designed a heuristic algorithm based on a layered-auxiliary-
graph which can significantly reduce request blocking proba-
bility compared with the baselines. In [33], Gong et al. aimed
at solving the location-constrained virtual network embedding
(LC-VNE) problem. An LC-VNE algorithm based on a compati-
bility graph was proposed to achieve integrated node and link
mapping. In [34], the authors focused on the VNT reconfigura-
tion problem in hybrid optical/electrical datacenter networks.
Experimental results showed that their method outperforms
existing methods and achieves near-optimal solutions. In [4],
leveraging the parallel transmission characteristics of optical
fibers, the authors focused on reducing the complexity of net-
work topology to achieve efficient VNT embedding. They formu-
lated a mathematical model and proposed a location prioritized
VNT embedding algorithm based on node proximity sensing
and path comprehensive evaluation. The results showed that
their algorithm improves the request acceptance rate by 13%
compared with the existing algorithms. Recently, ML has also
been applied for VNT embedding [13, 35]. In particular, the au-
thors of [13] proposed to divide a VNT into subgraphs and use
a deep reinforcement learning (DRL) method to find the most
suitable substrate resources for tenants. The experiments demon-
strated that their framework achieves reduced computation time
and comparable blocking performance.

Despite the advances in QoT estimation and VNT embed-
ding, provisioning of ML-based QoT estimators for VNTs has
rarely been addressed. This entails further studies for meeting
the challenges of automating the provisioning pipeline and sus-
taining desirable model generalization ability and scalability
while preserving data confidentiality.

3. NETWORK ARCHITECTURE

Fig. 1 depicts an envisioned meta-learning-aided network ar-
chitecture supporting ML service automation for dynamic VNT
configuration. The architecture employs a three-hierarchy net-
work control and management paradigm, where a substrate
network manager and a VNT manager configure the physical
and virtual resources [using software-defined networking (SDN)
controllers] respectively, while a VNT orchestrator (VNT-O) sits
in the top hierarchy to coordinate the operations of the two
entities. A VNT request can be modeled as composed of a set
of virtual nodes and links with certain capacity requirements,
and the desired ML services for QoT estimation, routing, mod-
ulation and spectrum assignment (RMSA), fault management,
and so on. Upon receiving such a request, VNT-O first makes
the substrate manager embed the requested virtual nodes and
links onto proper physical nodes and links by configurations
of the related optical switches (step 1). For instance, a virtual
link with a capacity of two wavelengths can be mapped onto
a multi-hop path in the substrate allowing λ1 and λ2 to prop-
agate end to end. VNT-O then instantiates an SDN controller
for the VNT manager (step 2), providing interfaces that allow
the VNT manager to manipulate the allocated resources accord-
ing to an abstracted view. Afterward, VNT-O applies a meta
learning framework for automated ML service provisioning. In
the offline training phase (step 3), VNT-O retrieves data related
to the requested ML services from its database and performs
meta training to obtain a set of meta models. The principle of
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Fig. 1. Meta-learning-aided network architecture for ML ser-
vice automation.

meta training will be detailed in Section 4.C. These meta models
encapsulate knowledge generalizable across different tasks (ML
services for different VNT configurations) and serve as templates
for creation of new ML models. In the online provisioning phase
(step 4), VNT-O coordinates the substrate and VNT managers to
collect a few additional samples for each ML service, initializes
an ML model with the corresponding meta model, and performs
fine tuning with the new data. Note that, the substrate and VNT
managers may report encrypted data due to privacy considera-
tions, and therefore, the offline training and provisioning phases
also involve distributed collaborative learning procedures for
joint optimization of the ML models and the encryptors (see
Section 4.B). Finally, the architecture can realize agile ML service
provisioning for dynamic VNT configurations.

4. QOT ESTIMATION SERVICE AUTOMATION

In this section, we delineate the provisioning of network-wide
QoT estimators for dynamic VNT configuration as a case study
on meta-learning-aided ML service automation.

A. GNN-based Network-wide QoT Estimation
VNTs feature highly diversified topological characteristics in
terms of the numbers of virtual nodes and links, connectivity,
and notably, the sets of substrate nodes and links/paths VNTs
are mapped onto. Provisioning VNTs with end-to-end QoT
estimators can either be costly when training a separate model
for each connection or face challenges of generalizing diverse
lightpath configurations when training a universal model. In
this work, we opt for building network-wide QoT estimators
with a GNN-based design which has been demonstrated to be a
powerful tool in learning generalizable graph representations
from topological data [36]. Algorithm 1 outlines the procedures
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of the proposed GNN design.
1) Graph data construction. We construct a graph-structured

data sample for each VNT, where each node/edge in the graph
signifies the corresponding virtual node/link in the VNT and has
a set of features. We denote node features by a three-dimensional
matrix Fn ∈ R|V|,|V|,7, so that each node v ∈ V is character-
ized by |V| vectors of seven values. Here, V is the node set
and |V| gives the number of nodes in V. Each vector conveys
the transmitter-side configurations for the connection from v
to the corresponding destination node, which include launch
power, bit rate, baud rate, channel spacing, number of channels,
transponder type, and transponder mode. We embed the physi-
cal parameters of virtual links (i.e., total link length, number of
spans, number of physical links) into edge features Fe ∈ R|E|,3.

2) Initialization. Having formed a graph data set G, the al-
gorithm then initializes null augmented node features Fa that
have a similar shape to that of Fn but with three elements in
each vector (Line 4). The three elements serve as placeholders
for the subsequent aggregation of edge features. Meanwhile,
we parameterize a feature embedder hθh

(·) and a QoT predictor
gθg (·) by neural networks [e.g., multi-layer perceptrons (MLPs)],
where θh and θg are the sets of trainable weights.

3) Message passing and aggregation. Next, the for-loop covering
Lines 5-14 performs iterative messages passing and aggregation
for K layers, aiming at learning graph-level representations for
each VNT (from nodes and edges to global). In each layer, ev-
ery node u ∈ V first collects the additions of the augmented
node features of its adjacent nodes (F̃a[v]) and the correspond-
ing edge features (Fe[E[u, v]]) in Line 9. Here, Line 6 avoids the
dissemination of updated node features within a single layer
due to the sequential executions. Lines 10-14 are for message
aggregation, ensuring that each vector of Fa[u] is overwritten
only when the received vector is not null, and it has not been up-
dated before (Fa[u][j] == 0) or the path distance feature (w.l.o.g.,
placed as the first element) in the received vector is smaller than
the current value. As such, we enable accumulations of edge
features along the shortest routing paths for each node pair (con-
nection). Note that, we disable the diffusion of node features
Fn as lightpath QoT is less relevant to the transmitter configura-
tions at immediate nodes. The accumulated features received
by each node are fed to the feature embedder hθh

(·) to extract
higher-level representations, which are then combined with Fn
to generate the graph representations X in Line 15. The above
procedures distinguish the proposed GNN with a conventional
design [37] that aggregates nodes indiscriminately and performs
interleaving message passing and embedding.

4) Model outputs and training. Line 16 outputs the QoT esti-
mations for all node pairs using gθg (·) and X as inputs. This
way, we establish a generalizable QoT tool for VNTs of arbitrary
structures. Finally, the algorithm returns a trained GNN by
minimizing the discrepancy between the model predictions and
the true labels Y in Lines 17-18, which will be detailed in Section
4.C.

B. Privacy Preserving with Distributed Collaborative Learning

A primary challenge for effective VNT management lies in the
data confidentiality constraint, where neither substrate network
managers nor tenants will disclose their respective network or
service configurations in plain text. In this work, we consider a
scenario in which substrate network managers provide optical
tunnels (through optical line systems) to VNTs while tenants
transmit data signals with their own optical line terminals. This

Algorithm 1. GNN-based network-wide QoT estimator design.

1: Input: graph data G, number of aggregation layers K.
2: Output: network-wide QoT estimator fθ(G).
3: derive the node set V, edge set E, node features Fn ∈

R|V|,|V|,7, edge features Fe ∈ R|E|,3, and labels Y ∈ R|V|,|V|

for each sample in G;
4: initialize augmented node features Fa ← 0 (Fa ∈ R|V|,|V|,3),

feature embedder hθh
(·), and QoT predictor gθg (·);

5: for i = 1 to K do
6: F̃a ← Fa;
7: for each node u in V do
8: for each adjacent node v of u do
9: F′ ← F̃a[v] + Fe[E[u, v]];

10: for j ∈ [1, |V|] \ u do
11: if F′[j] == 0 then
12: continue;
13: if Fa[u][j] == 0 or F′[j][0] < Fa[u][j][0] then
14: Fa[u][j]← F′[j];
15: X ← {Fn, hθh

(Fa)};
16: fθ(G)← gθg (X );
17: optimize θ = {θh, θg} to minimize the discrepancy between

fθ(G) and Y;
18: return fθ(G).
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Fig. 2. Principle of distributed collaborative learning.

leads to the separate ownership of node and edge features, i.e.,
by tenants and substrate network managers, respectively, mak-
ing the proposed QoT estimator design not directly applicable.
We bridge this gap by applying the distributed collaborative
learning method presented in [30]. Fig. 2 illustrates the princi-
ple of distributed collaborative learning. Basically, each of the
tenants and substrate network managers employs a customized
neural network encoder (e.g., an MLP, which can be seen as
an encryptor) to map the raw node/edge features into a latent
space (i.e., encrypted features, step 1). Since neural networks
consist of multiple layers of linear transformations interspersed
with non-linear activation functions, retrieving the raw inputs
from the latent space turns to an ill-posed inverse problem that
cannot be accurately solved or even cannot be solved, especially
in the absence of the knowledge about encoder structures. This
principle underpins the autonomy of both entities. The VNT
orchestrator collects the latent features (step 2) and executes Al-
gorithm 1 (step 3) so long as it treats the latent features as the
node/edge features. The encoders can be trained collaboratively
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Table 2. SNR thresholds for different transceiver specifications (OpenROADM MSA ver. 5.0 versus Voyager) [38].

OpenROADM MSA ver. 5.0 Voyager

Mode SNR Threshold Mode SNR Threshold

100 Gbit/s, 31.57 Gbaud 12 dB 100 Gbit/s, 32 Gbaud 12 dB

200 Gbit/s, 31.57 Gbaud 20.5 dB 200 Gbit/s, 66 Gbaud 16 dB

200 Gbit/s, 63.1 Gbaud 17 dB 300 Gbit/s, 44 Gbaud 18 dB

300 Gbit/s, 63.1 Gbaud 21 dB 400 Gbit/s, 66 Gbaud 21 dB

400 Gbit/s, 63.1 Gbaud 24 dB

with the GNN according to the chain rule [30], i.e., by tuning
the GNN through back propagation (step 4) and distributing the
gradients of the loss function with respect to the latent inputs
to the encoders for further gradient updates (step 5), without
specific modifications of the training algorithm adopted.

C. Meta-learning-aided Service Automation
Despite the proposed GNN-based QoT estimator design may
learn generalizable graph representations, VNTs also involve
nontopological characteristics, for instance, utilization of differ-
ent modulation formats. This can severely degrade the perfor-
mance of a trained model when directly applied to new tasks.
Therefore, automating QoT estimation services for VNTs further
entails training algorithms that can harness accurate QoT esti-
mators for unseen VNT configurations promptly. In this work,
we apply the model-agnostic meta-learning (MAML) algorithm
[39] to accelerate the training of QoT estimators. The core idea
of MAML is to learn model initialization (dubbed meta model)
that can generalize over tasks, so that only a small number of
samples are needed to fit the learned initialization to a target
task. To do so, MAML constructs a support set St and a query
set Qt for each task t, i.e., the QoT estimation task for a given
VNT. Specifically, Qt contains the graph data sample for the
target VNT, while St is composed of samples from VNTs of sim-
ilar configurations (e.g., same topology but different lightpath
parameters). During training, MAML first initializes a meta
network, as for the proposed network-wide QoT estimator, fθ(·),
and traverses all the tasks sequentially. For each task, MAML
takes fθ(·) as a starting point and performs multiple rounds of
gradient updates (using a conventional training algorithm, e.g.,
stochastic gradient descent) to minimize the loss on St. Let fϕt (·)
denote the obtained model. Then, we evaluate fϕt (·) with Qt
and obtain a loss of L(ϕt,Qt). The objective of MAML is finding
an optimal θ∗ that minimizes the loss over all the tasks, i.e.,

L̂(θ) = ∑
t
L(ϕt,Qt). (1)

The optimization problem translates into training a model ini-
tializer fθ∗ (·), which achieves the best testing performance over
all the tasks (minimized loss on the query sets) after fine tuning
with the support sets. In practical implementations, the opti-
mization is approximated by sequential updates on each task
according to,

θ = θ − α · ∇ϕtL(ϕt,Qt), (2)

where α is the learning rate,∇ϕtL(ϕt,Qt) computes the gradient
of L regarding ϕt. After training, the VNT orchestrator can
quickly provision QoT estimators to newly configured VNTs by
fine tuning the meta model with a few additional samples.

Ulm

(b)(a)

Fig. 3. (a) CONUS network and (b) German network.

Table 1. Properties of the CONUS and German topologies.

Property CONUS German

No. of Nodes 76 17

No. of Edges 99 26

Max. Path Len. (km) 6472.18 951.00

Mean Path Len. (km) 2069.20 317.89

Max. SNR (dB) 29.90 29.93

Min. SNR (dB) 9.08 17.36

5. PERFORMANCE EVALUATION

In this section, we first describe the data set used and then
present performance comparisons between the proposed design
and a baseline under different choices of parameters.

A. Data Generation
We evaluated the performance of the proposed design with
synthetic data collected using GNPy [38]. Specifically, we con-
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figured a large set of VNTs by embedding randomly generated
graphs onto the CONUS and German network topologies as
shown in Fig. 3. The main properties of the two topologies are
presented in Table 1. Each VNT graph is composed of five to 30
virtual nodes, while the link mappings were computed based
on the shortest path routing scheme. Within each VNT, we set
up lightpaths with data rates, modulation formats and trans-
mitter launch power randomly chosen from {100, 200, 300, 400}
Gbps, {QPSK, 8QAM, 16QAM}, and [−2, 2] dBm, respectively.
A flex-grid spectrum allocation mechanism was applied, which
allocates spectrum ranges of 50 to 200 GHz at a granularity of 25
GHz to meet the data rate requirements. The signal-to-noise ra-
tio (SNR) of each lightpath was monitored and compared with a
preset threshold to determine the viability of the lightpath’s QoT
(i.e., “1” for viable communication, and “0” otherwise). Table
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Fig. 6. Prediction accuracy as a function of number of fine-
tuning samples in the support sets.

2 summarizes the SNR thresholds for the two transceiver spec-
ifications employed by GNPy. The configuration parameters
and the viability indicators (labels) of these lightpaths, together
with the adjacent matrix of the VNT graph, constitute a graph
data sample. Then, the network-wide QoT estimation task for
this specific VNT translates to binary classifications for all the
lightpaths in the VNT.

B. Results and Discussions
1) Evaluation on the impact of number of aggregation layers. We
first evaluated the impact of number of aggregation layers K on
the performance of the proposed meta learning-aided network-
wide QoT estimator design and a baseline that adopts the same
GNN architecture but performs legacy training procedures (i.e.,
training a model by minimizing the loss over the entire training
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Fig. 7. Loss & accuracy results when fine tuned to larger VNTs with (a) K = 2, (b) K = 3, and (c) K = 4.
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Fig. 8. Loss & accuracy results when pretraining and fine tuning were performed using VNTs generated under different substrate
networks (CONUS versus the German topology) with (a) K = 2, (b) K = 3, and (c) K = 4.

set). The feature embedder and the readout module (gθg (·) in
Algorithm 1) of the GNN were implemented by MLPs of two
([10, 7] and four layers ([24, 48, 12, 1]), respectively. In MAML
pre-training, 200 tasks, each associated with a support set of
five graph data samples and a query set of one sample, were
used. Each graph sample contains five to 15 virtual nodes. The
same data set was rearranged into a training set (with samples
from the support sets) and a testing set (with samples from the
query sets) for evaluating the baseline model. Figs. 4(a)-(b) show
the evolution of loss and prediction accuracy in pre-training as
a function of training epoch when K is equal to 2. Here, the
loss and accuracy results were computed over the query sets (for
MAML) or the testing sets (for the baseline). We can observe that
the training process of MAML is less stable and the asymptotic
accuracy is slightly lower (by∼ 1%) compared with the baseline.
The instability of MAML training can be attributed to the ap-
proximation with Eq. 2 which indirectly optimizes a meta model
by applying the gradient of the loss of a task-specific model
(fine tuned from the meta model) on a small query set. The indi-
rect optimization also can be seen as computing second-order
derivatives, leading to longer convergence periods. The accu-
racy disadvantage of MAML is owing to its objective of learning
generalizable initializations for all tasks, whereas the baseline
targets exactly fitting the training set. However, from Fig. 4(c),
we can see that when fine tuned to provision QoT estimators for
new VNTs (100 new tasks were generated), MAML converges
faster and achieves an accuracy improvement by ∼ 3% over the
baseline, verifying the effectiveness of the learned meta model.
Figs. 4(d)-(f) show the results when K was set to be 3, which
coincide with the observations drawn when K = 2. Notably, we
can see that a larger value of K results in more stable training

and higher pre-training accuracy. This is because increasing
K expands the receptive field of a node, allowing it to aggre-
gate features from farther nodes, and thereby, achieves better
topological awareness.

2) Evaluation on the impact of data encryption. Next, we discuss
the impact of privacy preserving with distributed collaborative
learning. The node and edge feature encryptors were both imple-
mented by MLPs of two layers ([10, 5] and [20, 7], respectively).
Fig.5 shows the training curves of MAML with and without
feature encryption. The results indicate that introducing feature
encryption does not compromise the asymptotic accuracy of
MAML evidently and still leads to an accuracy of ∼ 95% after
convergence. The cost of feature encryption lies in the slightly
worsen training stability and longer convergence time. This
is attributed to the increased number of layers, which affects
MAML especially because of the approximation used in training.
Nevertheless, we believe this minor performance variation is
acceptable provided the conservation of data confidentiality.

3) Evaluation on the impact of number of samples. With the pre-
trained models mentioned above, we further assessed the impact
of number of samples in the support sets on fine tuning (using
50 new tasks) and present the results in Fig. 6. Still, the baseline
model was fine tuned with the same samples in the support
sets. It can be observed that MAML consistently outperforms
the baseline and that the performance of both designs improves
with the size of support set. MAML can achieve an accuracy of
> 93% with just one sample in the support set because the pro-
posed GNN already learns generalizable graph presentations,
and this performance is elevated to surpass 96% with seven
samples.

4) Evaluation on model generalization ability over larger VNTs.
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The above results demonstrate the generalization ability of
MAML when fitted to new VNTs of the same scales. Next, we
tested the generalization ability of MAML when provisioning
QoT estimators for VNTs of larger scales. Specifically, we tried to
fit a meta model trained previously with VNTs of [5, 15] virtual
nodes and K = 2 to VNTs of [20, 30] nodes. Fig. 7 presents the
results of loss and accuracy after fine tuning with K set to 2, 3
and 4, respectively. We can see that the proposed GNN allows
both MAML and the baseline to quickly fit larger VNTs. Again,
MAML outperforms the baseline in all three cases. The advan-
tage of MAML gets more evident as K increases, despite that
a larger value of K leads to a slightly higher initial loss (larger
receptive fields, and thereby, a more complex model to be opti-
mized). When K = 4, MAML achieves an asymptotic accuracy
of 96.3% after training with ten epochs, while the asymptotic
accuracy from the baseline is 94.1% at epoch 50. Besides, the
training process from MAML remains more stable as K increases.

5) Evaluation on model generalization ability over different sub-
strate networks. Ultimately, we evaluated the generalization abil-
ity of the proposed design in a more challenging setting, where
model pretraining and fine tuning were performed using data
collected from different substrate network topologies. In partic-
ular, we still used the previously pretrained models but fitted
them to 50 VNTs generated under the German network depicted
in Fig. 3(b). These VNTs are composed of five to ten virtual
nodes. Note that, the German network allows for provision-
ing of larger-demand connections and the adoption of more
advanced modulation formats owing to its smaller scale (shorter
end-to-end distances), and thereby leads to different transmis-
sion characteristics. The results are presented in Fig. 8. In this
setting, the proposed design dominates the baseline by achiev-
ing accuracy improvements of nearly 20%. MAML is able to
converge after 20 training epochs, whereas the baseline fails to a
large extent when adapted to the new tasks, achieving an accu-
racy of only around 63.8%. In contrast, the asymptotic accuracy
from MAML is ∼ 82.5%. We also notice from Fig. 8 that the
impact of increasing K is negligible. This is because the Ger-
man network has a smaller graph radius, and therefore, K = 2
already provides a receptive field adequate for learning useful
graph representations. Overall, the above results demonstrate
superior generalization ability of the proposed design compared
with the baseline.

6. CONCLUSION

In this paper, we presented a meta-learning-aided ML service
automation framework for dynamic VNT configuration in op-
tical networks. We studied a GNN-based network-wide QoT
estimator design, complemented by a distributed collaborative
learning mechanism, as a use case under the proposed frame-
work. Numerical results demonstrate superior performance of
the proposed design in terms of prediction accuracy and general-
ization ability. Future research directions include (1) developing
joint optimization methods for VNT embedding and ML service
provisioning, and (2) investigating meta learning approaches for
automating the entire ML service provisioning pipeline.
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