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Abstract: We demonstrate the first experimental testbed with a hierarchical machine-learning 

network management framework for impairment-aware end-to-end elastic optical RMSA service 

provisioning across multi autonomous domains with QoT estimation deviations below 10%.  

OCIS codes: (060.4250) Networks; (060.2330) Fiber optics communications  

1. Introduction 

While software-defined elastic optical networking (SD-EON) is emerging as a promising solution for effectively 

supporting high-capacity and dynamic traffic demands, realizing the same effectiveness across multiple autonomous 

systems (ASes) [1] remains a challenge. In particular, guaranteeing the quality-of-transmission (QoT) of end-to-end 

lightpaths is non-trivial across optically transparent inter-domain networks. Due to administrative constraints, each 

AS manager (or domain manager - DM) will disclose only very limited intra-domain information, making the 

estimation the QoT of inter-domain lightpaths challenging. As a consequence, previous QoT estimation solutions 

based on analytical methods [2] or big data analytics [3-5] cannot be easily applied since they require full knowledge 

of the domains (i.e. topology, links characteristics, etc.). In this paper, we take advantage of a broker-based multi-

domain SD-EON framework [6] and propose a hierarchical machine learning mechanism for inter-domain QoT-aware 

provisioning. In the proposed mechanism, DMs adopt a domain-level learning model with the full domain knowledge 

and performance monitoring data. The DMs negotiate market-driven relationships [7] with the broker plane with a set 

of agreements. Then, the DMs abstract local knowledge repository and pass it on to the broker plane which eventually 

learns the end-to-end path QoT across multiple domains. The broker plane makes use of the QoT estimator to calculate 

inter-domain lightpaths with appropriate performance margins or reconfigure in-service lightpaths with degraded QoT. 

By using a two-domain seven-node testbed with real-time optical performance monitoring (OPM) and a broker-based 

multi-domain SD-EON framework [6] (see Fig. 1(a)), we demonstrate the first hierarchical machine learning 

mechanism for inter-domain QoT-aware provisioning. By using artificial neural networks (ANN) with real-time OPM 

data, we demonstrate the proposed hierarchical framework with Q-factor estimation accuracy above 90% (e.g. less 

than 10% of deviation) for 40 Gb/s 16-QAM lightpaths.  

 
Fig. 1. (a) Multi-domain network architecture with hierarchical learning. IXP: internet-exchange point. (b) Proposed workflow. 

2. Hierarchical learning assisted network architecture 

Fig. 1(a) shows the broker-based multi-domain SD-EON architecture with the proposed hierarchical learning 

framework for QoT-aware inter-domain provisioning. Each DM manages service provisioning operations of its 
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domain through the software-defined network (SDN) framework. It consecutively monitors and records the 

performance of intra-/inter-domain lightpaths and the status of the data plane equipment. With these data, each DM 

can train a domain-level QoT-estimator that can predict the QoT of lightpaths given the corresponding link 

configurations (e.g., modulation format, link loads, optical power, etc.). The broker plane coordinates DMs for inter-

domain provisioning. DMs abstract their domains and submit virtual links together with the predicted QoT to the 

broker. Then, the broker can build a hierarchical learning model that makes use of the learned knowledge from each 

domain to predict the QoT of inter-domain lightpaths. By exploiting the domain-level and broker-level learning 

progressively, the proposed framework fully supports the autonomy of ASes. Fig. 1(b) shows the operation principle 

of the learning and the provisioning phases of the proposed framework. In the learning phase (steps a-d), DMs and 

the broker train reliable QoT estimators through the hierarchical learning method. Then, when a DM receives an inter-

domain lightpath request (step 1), it forwards the request to the broker for inter-domain services (step 2). The broker 

sends out Status_Request messages (step 3) to related DMs for the information of virtual links and the domain-level 

QoT predictions. After receiving the Status_Reply (step 5), the broker constructs a multi-domain virtual topology and 

calculates a QoT constrained routing, modulation and spectrum allocation (RMSA) scheme with the assist of the 

hierarchical learning (step 6). Finally, the broker informs the associated DMs with the desired resources allocation 

(step 7), which in turn configure their domains to provision the requested the inter-domain lightpath (step 8). 

3. Experimental Testbed for datasets generation and training 

 
Fig. 2. (a) Multi-domain SDN testbed setup. (b) OPM reading at ingress of node A. (c) Histogram of the collected inter-domain dataset. (d) 

Convergence of the hierarchical ANNs and the omniscient ANN. (e) Histogram of the measured Q-factor versus predicted Q-factor.  

Fig. 2(a) shows the experimental testbed, which consists of two domains and seven nodes. In the transmitter at the 

source node (node A), a 30 kHz linewidth external cavity laser (ECL) at 1551.75 nm is modulated with a 40 Gb/s 16-

QAM signal using a LiNbO3 phase-quadrature modulator. This signal is the testing channel. A standard coherent 

receiver is located at the destination node (node G) to receive the testing channel with a narrow band fiber-Bragg-

grating (FBG) filter. Twenty 50GHz-spacing DWDM channels in the C-band act as background traffic. They are 

launched into the network at the input of node A, and node C. Four wavelength selective switches (WSSs) route, 

bypass, drop, or apply specific attenuation to any WDM channel in the network testbed. Amplified fiber spans of 

different length separate each node. We used an optical spectrum analyzer (OSA) as the OPM tool since it can provide 

information regarding DWDM channels location, optical signal to noise ratio (OSNR) and power. Fig. 2(b) shows the 

OPM reading (0.1 nm resolution) at the output of node F.  The OPMs report their readings to a PC that serves as the 

OpenFlow (OF) agent, which processes the raw data obtained from the OPMs and send the collected information (total 

power, noise power, and channel occupancies) to the corresponding DMs (the same PC). The two DMs connected to 

a third PC which serves as the broker. We implemented the ANNs on the DMs and broker with PyTorch, where five 

and seven hidden-layers are employed for the DMs’ and broker’s ANNs, respectively. To collect training and testing 

datasets, we enumerated all the possible routing paths from node A to node G for the testing signal, while applying 

random routing paths with uniform distribution for each background signal and random attenuations with exponential 

distribution for all signals (including the testing signal) at each WSS. For each routing configuration, the actual Q-

factor of the testing signal measured at node G, Qmes, is recorded as the label of the training dataset. Fig. 2(c) presents 



a histogram of the collected inter-domain datasets with over 1400 elements. In addition, we also collected over 780 

datasets for each domain individually by putting the coherent Tx or Rx at the IXP. For the domain-level ANN, we 

used 680 datasets for training and 100 datasets for evaluation. Once the domain-level ANN converged, we started 

training the broker-level ANN with 1200 elements. The absolute deviations between the broker-level ANN Qest and 

the label Qmes, defined as |Qest – Qmes|/Qmes, is below 10%. Fig. 2(d) presents the convergence of the proposed 

hierarchical estimator as a function of training iterations. For comparison, we also included the training result example 

of an omniscient orchestrator, who has all information of domain 1 and 2. The proposed framework shows slightly 

slower convergence speed and less robustness against the omniscient orchestrator since it relies on the predictions 

from the domain-level ANNs. Yet once it converges, our hierarchical model can achieve comparable accuracy as the 

omniscient orchestrator. Fig. 2(e) shows the result of inter-domain Q-factor estimation using the hierarchical learning 

approach. This result demonstrates that the hierarchical learning-based framework can estimate the QoT (using Q-

factor as the metric) of an inter-domain optical link with satisfactory accuracies.  

4. Use case and results: impairment-aware inter-domain service provisioning 

Once we experimentally verified that the hierarchical learning-based QoT estimator performance is accurate, we 

now demonstrate an inter-domain lightpath service provisioning using the proposed framework. A network client 

located in domain 1 requests a lightpath between node A and node G (located in domain 2). Fig. 3(a) shows the 

Wireshark captures from the DM 1. First, the client submitted its request to the local DM (message 1). Second, the 

DM initiated the RMSA process (message 2-7) depicted in Fig. 1(b) and established a lightpath over node A-B-F-G, 

as shown in Fig. 3 (b). Fig. 3 (c) shows the detailed message about the report of intra-domain QoT prediction of a 

virtual link sent from DM 1. Once the connection was established, we purposely introduced a time-varying attenuation 

between node A-B, which resulted in an intra-domain link failure. The domain-level ANN detected the Q-factor 

degradation and triggered an intra-domain rerouting (node A-C-B-F-G) shown in Fig. 3 (b) within Domain 1 to re-

provision the service. The measured Q-factor and the end-to-end Q-factor prediction (calculated every 30 seconds) 

are shown in Fig. 3(c). As the optical attenuation between node A-B increases, the measured and predicted Q-factors 

go down due to the increased noise level. When domain 1 triggers the intra-domain rerouting, the Q-factor of the 

lightpath resumes to 12 dB, and efficient impairment-aware service provisioning is realized.  

 
Fig. 3. (a) Wireshark captures at DM-1 during RMSA. (b) Illustration of the RMSA scenario; Top: original lightpath; Bottom: lightpath after 

rerouting. (c) Detail of selected message. (d) Q-factor over time with time-varying optical attenuation on link A-B. Inset shows the recovered 

constellation after the rerouting.  

5. Conclusion 

We experimentally demonstrated the first hierarchical learning framework that achieves end-to-end RMSA and 

impairment-aware service provisioning for elastic optical networks with autonomous domains. By using a hierarchical 

ANNs, the proposed framework effectively exploits the correlation between QoT and the monitored data from OPM 

units to provision end-to-end services across multi-domains while guaranteeing autonomy and privacy of each domain.  
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