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Abstract—As there is an increasing trend to deploy geographi- store the data when the subsequent network link is congested
cally distributed (geo-distributed) cloud datacenters (ICs), the and send it out to the destination DC later. Note that, these
scheduling of data-oriented tasks in such cloud DC systems et res make the scheduling of data-oriented tasks more

becomes an appealing research topic. Specifically, it is clenging . . .
to achieve the distributed online scheduling that can hand flexible, and hence we need to incorporate more sophisticate

the tasks’ acceptance, data-transfers and processing jaig and  Scheduling algorithms. Moreover, the tasks are usuallialitig

efficiently. In this paper, by considering the store-and-foward ~ dynamic, and their arrival pattern can hardly be predicted.
and anycast schemes, we formulate an optimization problem Therefore, we need to find the optimal scheme to schedule
to maximize the time-average profit from serving data-orierted them in an online manner without much pre-knowledge on

tasks in a cloud DC system and then leverage the Lyapunov th ival patt hich is obvi v chall .
optimization techniques to propose an efficient schedulinglgo- e arrival patlern, which 1S obviously challenging.

rithm, i.e., GlobalAny. We also extend the proposed algorithm [N this work, by con_siderir_lg the anycast and store-and-
by designing a data-transfer acceleration scheme to reduce forward schemes, we investigate how to allocate network
the data-transfer latency. Extensive simulations verify hat our  resources and IT resources to support the data-orientks tas
algorithms can maximize the time-average profit in a distrituted dynamically and cost-effectively,e., maximizing the time-

online manner. The results also indicate thatGlobalAny and fit. H th fit is th in betw th
GlobalAny_Ext (i.e., GlobalAny with data-transfer acceleration) average profit. Here, the pront IS the margin between the

outperform several existing algorithms in terms of both time- reévenue from task serving and the cost due to resource con-

average profit and computation time. sumption. We formulate the optimization problem and design
Index Terms—Datacenter networks, Lyapunov optimization, & distributed online scheduling algorithig., GlobalAny by
Distributed online scheduling, Data-transfer acceleratn. leveraging the Lyapunov optimization techniques [14]. twit

GlobalAny the destination DC of a task can be adjusted adap-
tively during the data-transfer, rather than being deteedi

) i ) in its source DC directly. Our proposed algorithm maximizes
N OWADAYS, there is an increasing trend to deploy geme time-average profit in a distributed online manner and

ographically distributed (geo-distributed) cloud datace optains the profit that is arbitrarily close to the optimaluea
ters (DCs) for achieving enhanced user experience and8en{ye then extend it by designing a data-transfer acceleration
availability [1, 2]. In such cloud DCs, emerging applica0 scenario to unify the benefits of direct-transfer and store-
usually involve numerous data-oriented tasks [3-7]. Theggward schemes. Finally, extensive simulations are peréal
tasks need to transfer certain amount of data to remote DCS)ayajuate the performance of the algorithms and the msult
for further processing. For instance, e-Science and backiRjcate that they can outperform several existing algari
applications may need to transfer data among multiple 9&g-terms of both time-average profit and computation time.
d!strlbuted _DCs [8, 9]. As the data-oriented tasks can causerpe rest of the paper is organized as follows. Section II
high-capacity data-transfer among DCs, they would impagljiews the related work, and we formulate the problem in
the service capacity and resource management in cloud BEetion 111, The distributed scheduling algorithm is prepd
systems significantly. Therefore, we need to schedule thgmsections V. Section V describes the data-transfer accel

adaptively to ensure efficient DC operations. _ ation scenario and the performance evaluation is disctissed
The scheduling of data-oriented tasks bears some integestqtion V. Finally, Section VIl summarizes the paper.
features. First of all, the data-transfers can utilize thgcast

routing schemei.e., data can be forwarded to and processed Il. RELATED WORK

by any DC within a destination DC set. For example, the datapyeioysly, people have studied the task scheduling across
backup tasks can use the mutual backup model [1] and chogRg,4 pcs ‘with the objectives of load balancing [15] and
any DC within a backup group as its backup site. Secondly, §g 56t minimizing [16]. Meanwhile, task scheduling waals
data-transfers usually can tolerate certain setup delyl3]. .,,sidered for the Big Data applications [17—19]. However,
Hence, they can leverage the store-and-forward scheme [4il,se jnvestigations did not address the data-transfeepsdn

Specifically, the intermediate DCs along the routing path c& ... pc networks, and might lead to long processing latenc
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and Technology, University of Science and Technology ofh@hHefei, Anhui - considered the store-and-forward scheme for traffic sdivegiu
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fairness for data-transfers with the store-and-forwatdkste.
Note that, these studies optimized the scheduling of data-
transfers based on the pre-knowledge of their arrival pagte
and thus could only get the optimal solution for certain time
period. Moreover, the computational complexity of their ap
proaches increased significantly with the length of thequkri
From the perspectives of network framework and protocol,
the studies in [21-24] and [25-28] have considered how to ‘
realize virtual network embedding (VNE) and network func- L 5
tion virtualization (NFV) in inter-DC networks, respeatiy, 3 sro.of Task, @ Dst.of Task,
and Kettimuthuet al. [29] have tried to optimize the data- [ Srcof Task, [ Dstof Task,
::’?Vi’:)erlilsngljn (;BKS Eaiezyssff?;?juXxghszcleer:ggwgrc?;;leeﬁnjﬁ% 1. Geo-distributed cloud DC system that carries daented tasks.
Microsoft have developed systems such as B4 [12] and SWAN
[30], respectively, to manage the inter-DC traffic in thelE® o )
Wu et al.investigated the data-transfers across SDN-controliggfficiently long for the system to implement the updatesro
geo-distributed DCs in [31]. Our work is different from tiees the scheduling algorithnw.o.l.g, we normalize TS in thg rest
studies, as we do not require centralized network contrdl aff e Paper. Hence, we havet = 1, and the system time
management (NC&M) and the proposed algorithms can bt € {1,2,---}. There are multiple DCs in the system, and
implemented in a truly distributed way. we denote the network ag(D,¢), whereD |s_the DC _set
It is known that Lyapunov optimization techniques can b’ = {1:---,[D[}) and€ represents the set of inter-DC links.
used to design online scheduling algorithms that can ariigr  G€nerally, cloud DC provides numerous computing, storing
close to the time-average optimum without any pre-knowéed r I/O resources in the form of VM for task processing. In
on the requests’ arrival patterns [14]. Hence, they haven bg@iS Paper, we use IT resources to represent the resources
used to solve the scheduling problems in cloud computifig2t Would be used to process the data-oriented tasks and
[32], DC power management [33gtc In [34], Liu et al. assume the avgulaple IT res_ourcesDﬁz is CZ The available
leveraged the Lyapunov optimization techniques to addhess Pandwidth on link(i,v) € £is B; ., wherei andv represent
task scheduling and server/virtual machine (VM) managemdi© adiacent DCs in the network, ¢ € D).
within a single DC. However, they did not consider how to !N order to mimic the real cases, we assume that the data-
determine the routing path and bandwidth allocation for tfffiented tasks in the cloud DC system can be classified into

data-transfer of each task, which is essential for schegutie 'c| categories and denote the set of categoriesagach
data-transfers in inter-DC networks. Hence, their altyoni category has its own source and destination DC sets and data-

cannot be used to solve the problem studied in this worfé'.ze' Specifically, for thé-th category, the tasks are generated

Previously, with the Lyapunov optimization techniquegpe "M & DC in source DC s_eSk_ C D to deliver a block ofo
have proposed the back-pressure algorithm to manage the ddpta to any DC in destination DC s@y, C D for further
transfers in multi-hop wireless networks [35]. Howeverisit PrOCessing. For instance, for the first category in Fig. & th
known that this scheme can cause long and unnecessary digks Originating fronDC 2 need to deliver certain data C
transfer latency, especially when the traffic load is retyi < OF S Apparently, as we consider inter-DC traffic, the seurc
low. Even though the data-oriented tasks can be delayaaer 21d destination DC sets should not overla, S, N Dy =
obsessively long latency can still impact user experiende.7k € K. A weight coefficientw;, is assigned to the:-
Hence, the data-transfer latency of the back-pressureitiigo th category to facilitate dlﬁe_rentlated services. We Kset_p
has been addressed in [36, 37]. In [36], the authors triégPresent the set of categories that can be processag in

to perform routing path selection based on the informatiofPle ! lists the key notations used in the paper.

of the shortest paths, while the technique based on shadoW'e US€A;“* to denote the maximum number dfth

queues was proposed in [37], to shorten the data-transfaiegory tasks generated per TS. Then, the arrival rate for

latency. However, these studies were still based on the hd{p€ k-th category tasks iDC i at timet (i.e, A7 (#)) satisfies
by-hop store-and-forward scheme, which cannot reduce the 0 < Ak@t) < Ao Tiies,y Vink, 1)
data-transfer latency to the maximum extent.

whereZ;cs,y is @ boolean flag to indicate whethBC i is
included in source DC s&f;, as

1, Vi€ Sy,

0, Vid¢ Sy

I1l. PROBLEM FORMULATION
A. Network Model Tiies,y = {

We consider a geo-distributed cloud DC system as shown
in Fig. 1. To facilitate distributed online task scheduling ] o
the system operates based on discrete time-slot (TS) wih Data-Oriented Tasks Scheduling in DCs
a duration of At. Note that in a real cloud DC system, 1) Task Acceptancedith the anycast scheme, the destina-
At can range from a few seconds to several minutes [34ipn DC of a task can be adjusted by any of the intermediate
depending on the traffic dynamics. Specifically, it should HeCs along its routing path, before it finally reaches a fdasib



TABLE |

KEY NOTATIONS I @I DC;
i ! Al A2()
Af (t) number ofk-th category tasks generatedOrC 7 at timet Taske from | Tasks Acceptance ]
af(t) number ofk-th category tasks accepted C i at timet Adjacent DCs | . 5 Tasks from |
QF(t) [ queue fork-th category tasks ilDC 7 at timet Y b2 3 () 3 Adjacent DCs |
XE(t) | virtual queue fork-th category tasks iDC ¢ at timet L Zb%am Zbci(t)
z¥(t) | number of tasks accepted foi* (¢) at timet Zb"vi“) v v
bi?m(t) amount ofk-th category data that is sent over lifk v) at
time ¢ » ) 3 4
cF(t) | amount of IT resources allocated keth category tasks iDC L Qi Qi Qi Q')
¢ at timet | . )
' (t (¢
Tasks to | Gt &t
Adjacen!‘DCs E @ ﬁ
destination DC. As the destination DCs are selected in a DG BN IT Resources !
. . v v
global manner, we name this scheduling schem@labalAny "y Vo

Specifically, each DC uses the scenario illustrated in Fig. 2

to handle the data-oriented tasks. In each DC, we determfri@ 2. GlobalAnyscenario for scheduling data-oriented taski s.
whether a locally-generated task should be accepted or not

based on the status of a few queues, each of which stores

the tasks to a remote DC. We arrange the queues in each D@hen, for queu&*(t), Vk ¢ K; in DC i, we insert both the
based on the tasks’ categorié®. Q¥(t) denotes the queuelocally-accepted and remotely-sent-over tasks (all bgtumto

that stores all the tasks that belong to thth category inDC  the k-th category), while the sojourn tasks are removed and
i and it is initialized agQ¥(0) = 0. With all the queues in the sent to the next hop. Since the storage space in a DC is usually
cloud DC systemife., {Q¥(t),i € D,k € K}), we can obtain big enough, we can treat the queues as infinite ones. Hence,

the queue matriQQ(¢) as Q¥ (t) for task acceptance and transfer is updated as
Qi) Qi) - Qe
Qi) Qi) - Qi’q(t) Qi(t+1) =max | QF(t) — Y bi,(1), 0
Qt) = : : . : @) {v:(iv)eE} (5)
QAo @) - QSO to2 bl b Vi kgK:
vi(v,i)EE

In DC 4, the number of acceptddth category tasks at time

) 3) Task Processing:When a task arrives at one of its
t is denoted a&’(t), and we have

feasible destination DCs, it is inserted into the queue foalfi
0<af(t)<AF@), Vik. (3) processing and will not be sent to other DCs anymore. Then,
the destination DC allocates IT resources to process tle tas

The time-average expectation eff(t) is We denote the allocated resources to khth category tasks

1=t in DC i asc?(t). Apparently, the total amount of IT resources
aj = lim = > "E{af(r)}, Vi,k. should not exceed those available in each DC, as
t—oo t =
. ¥(t) < Ci, Vi 6
2) Data-Transfer with Store-and-Forward Schemé&he ?C’( )= G ©

data-transfer in the cloud DC system can be realized with the . .
store-and-forward scheme [10d]e., by utilizing the storage Sklmllarly, we denote th]f’ time-average expgctatlorazfoit) as
space in the intermediate DCs along the routing path to relgy 11€n. as for queug;(t), vk € K; in DC i, the remotely-
the data hop-by-hop. It is known that this scheme can proviggnt-over tasks are added and the sojourn requests areeemov
higher data-transfer throughput than the one that delitregs [OF final processing. We usgy, to denote the number oi-
data end-to-end directly [10]. th category tasks that unit IT resource can process per TS.
For data-transfer, a decision variabfe (¢) is defined as the Hence, we can update the queue for task processing as
amoqnt ofk-th category date_l that is sent over lifikv). Here, QF(t + 1) = max (Qf(t) R - b 0)
DCs i and v are adjacent inG(D,&). Apparently, the total X . )
transferred data should not exceed the available bandwidth + > bha(t), Vi, keK.
each link,i.e., {o:(vi)eg}
bev(t) < Bi,, Vi, ¥(i,0)€E. @ Fig. 2 gives an example to illustrate tﬁéobalAnyschedul-
— ing scheme. We assume that there are four categories of tasks
. . . i running in the cloud DCsDC i is the source DC of tasks
The time-average expectation of ,(¢) is denoted agy,. belonging to first two categories, and it is also a destimafic
And the. Fotal used barydwdthm(t) can be obtained by. of the tasks in the last two categories,, K; = {3,4}. Firstly,
summarizing the bandwidth used by 8‘_” the task categoriggy tasks generated as ones in the first two categories will be
and its time-average valug,, should satisfy accepted or dropped. Then, the accepted ones and tasks from
biw = bev, Vi, V(i,v) € €. adjacent DCs will be inserted into the corresponding queue
P Q%(t). If the tasks can be processedXC i (i.e., they are



in the last two categories), we should allocate IT resoutceswhere p; is the cost coefficient of the IT resources used by
process them. Otherwise, we should transfer the tasks to the store-and-forward operationsC .

adjacent DCs. And all the tasks are transferred according tdrinally, the time-average profit from serving the tasks can
this strategy until they arrive at one of their destinatioB<D be obtained as

In addition, Egs. (5) and (7) indicate that the more bandwidt , _ aF) 4 ) =S B (b ) =S ho(n). (14
resources and IT resources be allocated, the faster the task %}fl( ) ?h( 2 Zv 1(bic) Z 2(me)- (14)

can be transferred and processed. Here, we try to maximize the time-average profit while all

the constraints should be satisfied. In addition, all theugse

C. Profit-Driven Optimization Model in the system should keep stable, otherwise the processing
The discussion above indicates that the data-oriented takitency of accepted tasks may be infinite [14]. Hence, the

consume both bandwidth resources in the network and profit-driven optimization is modeled as
resources in the DCs and there is a tradeoff between the Mazimize P,
tasks processing Iate_ncy and resource consump_hon. Siece t st. Egs. (1) - (7) (15)
customers in the multi-DC system connect to their source DCs
and can submit data-oriented tasks there, we formulatefd pro
model by considering the revenue from serving the tasks and IV. GlobalAnySCHEDULING ALGORITHM
the cost due to the usages of bandwidth and IT resources. 'IAheL apunov Obtimization Techniaue
revenue is calculated based on two payments. The CSP gets yap P ques
the first payment from the customer who submits the task,We use the Lyapunov optimization techniques to solve the
when the corresponding source DC accepts the task. And gdimization in Eq. (15) and develop a profit-driven distitiéd
second payment comes ing{, also from the customer) whenonline scheduling algorithm. As the utility functiofi(-) is
the task’s data has been processed by its destination DC.Neglinear, we first introduce an auxiliary variablef (), to
the DCs handle task acceptance and processing separateipsform the original problem into the standard drift-osn
the revenue model addresses the two important milestonedgfit framework in Lyapunov optimization, as
serving a data-oriented task in the multi-DC system with the 0 < af(t) < Ape® Tiiesyy,  Visk. (16)
two payments. Apparently, the revenue from the first payment _ _ X
is related to the time-average expectation of task acceptafnd We denote the time-average expectation:pft) as ;.
rates, i.e, {a¥, Vi, k}. Here, we use a logarithmic utility ' Nen: the original problem is transformed into

QF (t) keeps stable Vi, k.

model, which follows the law of diminishing marginal utyit Mazimize Zfl (zF) + Zh(mk)
[34] and is widely used in previous work. ik k
F1(a¥) = log(1 + oy, - a¥), Vi, k, ®) = > ha(biw) = D> ha(na),
1,V i 17
whereqy, is the revenue coefficient for theth task category. st. Egs. (1)-(7) (")
The second payment is based on the number of tasks that < adb ik

have been processed. At timethe number of processddth Eopy K ble Vi k

category tasks isny(t), as @i (¢) keeps stable Vi, k,
. where we have

my(t) = cl(t) - pr, ©) .

: fi(zF) = lim z;E{log(lJrock 2l (1)}, Vi k.

t—o0

The time-average expectation iy (¢) is my. Then, with the
linear utility model in [38], we get this part of revenue as  Then, we use the virtual queues) k(t), Vi, k} with initial

fa(me) = v - my, Vk, (10) values asX[(0) = 0, to transform the constraint
where~; is the coefficient for tasks in the-th category. x; <af, Vik,
The cost of the bandwidth usage on litkv) € £ is in Eq. (17) into a queue-stable problem [14]. SimilarQdt)
ha(biw) = Biw - biw, V(i,v) €E, (11) in Eq. (2), we useX (¢) to denote the queue matrix for

k . k :
wherep,; ,, is the cost of unit bandwidth usage on ligk v). {X2(®), i, k}, and X7(t) is updated as

The last part of cost comes from the IT resource usage due Xi(t+ 1) = max(X{(t) —a;(t) +27(t),0) Vi,k.  (18)

to the store-and-forward operations. At timethe amount of | ., Q(t) = [Q(t), X(t)], and we define the Lyapunov
data that arrives at an intermedi@€ 7 and will be forwarded : ’ '

. functionL(£2(¢)) as
to a remote DC later i%;(¢), as

ni(t) = D bui(®) Tuexys Vi, (12) L(n(t»:%{Z(Qf(t)-wk>2+2(xf<t>~nk>2}7 (19)
k,v:(v,i)EE ik ik

and the time-average expectation of(t) is n;. Then, the The Lyapunov drift function is the conditional expectatioi
time-average cost due to IT resource usagB@i is the Lyapunov function in Eq. (19) for different TS’, as

ha(ni) = pi -ni, Vi, 13) A1) = E{L(Q(t + 1)) —L(Q(1) | Q®)}.  (20)



If we define((t) as and the optimal solutions ofx*(t), Vi, k,t} are

&) =" ek ) + 3 falma(t)) zi(t) =
~ .

: 0, Xt > =,
— hi1(bi () — ha(n;(t)), k
XF)-mg an’ A ta-Apes)-mi” ng |7
the drift-minus-profit expression can be obtained as . V-
A;enazv Xz (t) € |:07 (1 + ag - Amaac) . n2) :
®(Q(t) = AQ(1) - V- E{¢(1) | (1)}, (1) )

) 2) Task Acceptance PolicyWhen the real queue is not
whereV is the tradeoff parameter to balance the queue Iengqgﬁger than the virtual queud,e, Q(t) < XEK(t) - oy

and the time-average profit. Eq. (21) satisfies the inegual

&IobaIAn should accept all the newly-generateth categor
below becaus@max(q—c,0)+a)? < ¢* +a?+ 2 +2q(a—c). Y b 9 gory

tasksA¥(¢) in DC i at timet, otherwise, it should drop all of
them. This is because we can get the optimal task acceptance
D(Q2(t)) K B+ P1(2(t)) + P2(2(2)) + P3(2(t)) + P4 (€2(2)), ,
() < 1(60)) 2(8(1)) (1) 8 (()2)2) policy by minimizing Eq. (24), as
where B is a constant that satisfies Minimize QU(t) -6y - w? - af(t) — XF(t) - n2 - a* (1),

@ %

1 2 st 0<al(t) < ANt) - Trics,y, Vik (@9)
2> S p{ et - abo) ot <al(h) < S
ik and thus the optimal solutioa (¢)* is
+ (Z byi(t) +ar(t) - ) + (Z b ()] - wi - Tirgxy ) = AF(),  QF(t) < X[ (t) - O, (30)
v v ! 0, otherwise
+02 bf,’i(t))QJr(C?(t)yxk~5k)2:| wi - Tier;y | Q(t)}. 3) Bandwidth Allocation: To get the optimal bandwidth
v allocation, we first define3}", () as
And <I>_1(Q(t)), Do (Q2(2)), D3(2(t)) andd4(2(¢t)) have the BE (1) =(QF(t) — QF (1)) - w? a1
expressions as V- (Bow + o Topgreny)s Vi v, k. (31)

B4 (1)) :ZE{X{“(t)mi~m?(t)7V~fl(m?(t)) | )}, (23) Then., we can conclude that if t_he queue Iength§ are not
ik consideredGlobalAny should provide all the bandwidth on
link (i,v) to the queue that has the maximum positig, (¢)

By (QUt)) = Z]E{Qf(t).(;k cw? - ak(t) at timet_. This is b(_ac_au_s_e the optim'c_ll bandwidth allocation can
ik (24) be obtained by m|n|m|2|ng>3(ﬂ(t)) in Eq. (25). If the queue .
CXE@) n?-db ) | ), lengths are not considered, we can assume that the bandwidth

allocation would not result in empty queuds., there are
always enough data-transfers on each link. Hence, Eq. §25) i

— koY bk (1) — b caw?
D3(Q(t) = > E{QE(t) - (by,i(t) — bi, (1)) - wi independent of link status and can be transformed into

1,0,k (25)
+V - (Biw + po Tikgr,y)) - Do)} Mazimize Yy By ,(t) - bf,(t)
k
X , (32)
u(Qt) =D E{(— QI (t) - wi - cF(t) -k - O st.0< Y () < Biw, V(iv) €E,
ik k
— Vel (t) v k) - Tirexoy | Q(t)}&.%) and we can get the optimaf ,(¢)* as follows.
ke [ Biw(t), k=K,
bin() = {0, otherwise (33)

B. Distributed Online Scheduling where we have

We design a sched_uling algorithm.g(, GlobalAny to B — argmax{va(tﬂva(t) > 0,Vk € ).
handle the auxiliary variables, tasks’ acceptance, datssters ' '
and processing in an online and distributed manner. We will Therefore, we verify that in DG, GlobeAnyshould allocate
also verify that only small communication overhead is needéhe bandwidth on each link to the queue that has the maximum
for information exchange. positive Bﬁfv(t). Note that, va(t) equals to the weighted

1) Auxiliary Variables:We can get the optimal solutions ofdifferential queue lengthi.e., (QF (t)— Q% (t))-w}) subtracting
{x¥(t), Vi, k,t} by minimizing Eq. (23). For these indepen@ fixed value, which is determined by the cost of data-

dent variables, we have transfer using store-and-forward. AsobalAnyallocates the
bandwidth to the task category that has maximum weighted d-
Minimize X[ (t)-nii - i (t) = V - log(1 + ax - 27 (t)) ifferential queue length, we can provide differentiatec/ses

st. 0<aF@)< AP Vi k, (1) to the task categories by adjusting their weighis, }.



However, the analysis above overlooks the scenario tHfdgorithm 1 Bandwidth Allocation ofGlobalAnyfor DC i
the queue with the maximum positive}’, (¢) does not have Input:
enough data to fully utilize the allocated bandwidth. Fdsth ~ Q(t), {Bi., Yv}.
scenario, the bandwidth allocation according to the aferem 1: calculate{ B} ,(t), Vv, k} with Eq. (31);
tioned scheme becomes inefficient since bandwidth could bz get{Ni’fv, Vv, k} with LP-relaxation of Eq. (37);
wasted. Hence, we introduce a new constraint to make sue Nf, = |[Nf, |, Vo, k;
that all the allocated bandwidth is fully utilized in each DC 4: Q¥(t) = Qf(t) — Y N[, - 6k, Vk;

. _ vk .
0< Y k) <QF), Vik. (34) 5 Biw=Biw =2 Ny, -0k, V0,
viliv) €l 6: sort{v, k} in descending order aBf,(t) - &y;

Since each data-oriented task will be forwarded to one and for eack:h{v,k} in sorted ordedo
only one destination DC, the allocated bandwidth should b&  if Bi,(t) =0 t_he”k
in integer times of the data-size of each task category. Thus: A = |Rex(min(@,(1),5:,)0) |,

6 ’
we introduce an integer variabmi’f,u to represent the number 10: NEF, = NF, + A?
of tasks can be transferred on liifk v) and we have 11: Qf(t) = Qf(t) — A5
k k 12: Bi.'u = Bi.'u - A : 5]61
b, (t) = NF, -6, Vi k, Y(i,v) € E. 35 13 else ’
. o 14: break;
Then, we design a new optimization model for the datal—s_ end if
transfer in each DC as follows. 16: end for
Mazimize ZBﬁv(t) . bfyv(t) 17 bi‘c,'u (t) = Ni]f'u Ok, Vv, k;

v,k
st.0 <Y biy(t) < B, V(i,v) €&,
k (36) according to Eq. (26), the IT resource allocation can be
0< > biu(t) Qi) Yk, obtained by solving the optimization problem below
v:(i,v)EE

.. k k
bE o (t) = NE, - 8, Yk, (i,v) € €. Mazimize Y CF(t)-ck(t),

kek;
‘ 38
And the optimization in Eq. (36) can be rewritten as follows s.t. Z () < Ci, Vi 9

if we notice the relation betweetf , (t) and NF,. KeX,

Since CF(t) > 0, Vi, k € K; is always true, we can get the
optimal c¥(¢)* with the following procedure. Firstly, iDC i,
we sort the queuesQ¥(t), Vk € K;} in descending order of
Ck(t). Secondly, we allocate IT resources to them in sorted
’ X X order, until they all get sufficient IT resources to handle th
0< Z Niiy -0k < Qi (1), VE. tasks or all the IT resources are allocated.
vilhees 5) Overall Distributed Online SchedulingBased on the

Note that, the optimization in Eq. (37) represents a bound@galysis above, we get the overall procedureGibbalAny
multiple knapsack problem, which is known to BéP-hard for scheduling data-oriented tasks at timhén DC i, which
[39]. Therefore, we design an approximation algorithm thit shown inAlgorithm 2. Specifically, for each task category,
leverages the linear program relaxation (LP-relaxatioith w the auxiliary variable and task acceptance are first cafedla
rounding, as shown inAlgorithm 1. Specifically, in each independently with Egs. (28) and (30), respectively. Then,
DC, we first solve the problem in Eq. (37) by relaxing th&e useAlgorithm 1 to get the bandwidth allocation and

integer variables and then round down the solution to gé@ward the related tasks to adjacent DCs. Meanwhile, all th
{NF,, Yo, k}. Then, we allocate the residual bandwidh, tasks received from adjacent DCs should be accepted. Next,

7,09

on each link(i, v) to the remaining data ifQ* (¢), Vk}. This G]obaIAnyhandIes the task_s Whoge destinatit_)n DCsDxte:

means that we sort the combinations{af k} in descending with the scheme propos_ed in Section IV-B4. Finally, we updat

order of BX, (t) - 6., and then for each sorteidh, k}, we allo- {Qi ()} and{X(t)} with Egs. (5), (7) and (18), and share

cate the bandwidth on linki, v) to queueQ¥(t) accordingly. the queue lengths of (1)} with adjacent DCs.

Finally, the bandwidth allocatiot’ () is obtained. We should point out thaGlobalAnyrealizes the inter-DC
4) Task ProcessingTo get the 6ptimal IT resource alloca_data—orlented tasks transferring and processing in aluiséd

tion for task processing in destination DCs, we define way. Basically, all the accepted tasks will be deliveredhwit
the store-and-forward schemeAigorithm 1, until they reach

Cf(t) — (Qf(t) cwi O AV ) -k, ik € K. any of their destination DCs. Then, each task’s data will be
stored and processed. Meanwhile, all the DCs should exehang

Then, GlobalAnyshould allocate IT resources in destinatiothe information on queue lengths to their adjacent DCs with
DCs for task processing according € (¢). This is because Algorithm1 in each TS. Note that, the bandwidth overhead for

Mazimize Z Bﬁv(t) - Ok - Nik,'u
v,k

st. 0 < ZNZITU SO < Bi,m V(i,l}) €&, (37)



Algorithm 2 Tasks Scheduling ilDC ¢ using GlobalAny Store-and-Forward
. for each task category € K do ] i i
calculate auxiliary variable” (t) with Eq. (28); =

v

2 = =
3: accept tasks according t) using Eq. (30);
4: end forIO 0 | . . . .
5. useAlgorithm 1 to obtain the bandwidth allocation; Direct-Transfer
6: send tasks in queues to adjacent DCs with the allocated
bandwidth;
7: accept all the tasks from adjacent DCs;
8: process the tasks whose destination DC set inclides

; with th h i ion 1V-B4;
o ﬁg\:jlgt;{gks(i) e?ﬁ (;Z)ropvc])fs}t.ad In Section ' whether the bandwidth has already been allocated for itdo th

next hop, if yes, the data is sent out directly, otherwisés it
buffered in the intermediate DC and waits for the next TS.
Algorithm3 shows the data-transfer acceleration scheme de-
) ) . L _signed forGlobalAny Lines1-2 are for the initialization. Here,
the information exchange is negligible, when compared wif)e |;se flagF, = 1 to indicate that the data-transfer of the

the bandwidth used for the data-transfer. k-th task category can use lirfk, v), and £, = 0 otherwise.
Hence, reverse data-transfer can be avoided to minimize the
C. Optimality Analysis probability of forming routing loops. Specifically, if a knis
With the procedure demonstrated in [14, 34], we can easiged by the data-transfer of a task category, we forbid tte da
prove that the time-average profit obtained byGlobalAny transfer in the reverse direction in the subsequent itaratby
can approach to the theoretical maximum préfitarbitrarily Setting the corresponding’, = 0. Hence, we have

within a constant gap(<:).

Fig. 3. Example on data-transfer acceleration.

10: send queue lengths ¢fQ¥(t), vk} to adjacent DCs;

0 < N;C,v . 6k < Qf(t) ) Filfvv VZ, k7 V(L 1)) cé. (39)

V. DATA-TRANSFERACCELERATION In each iteration of the while-loop that covdrmes 3-18,

GlobalAnycan schedule the data-oriented tasks in the clol ¢ tries to extend the forwarding path segments to one
DC system to achieve the profit that is arbitrarily close t tH0re hop. Here, due to the time constraint from TS on the
optimal one. However, since we do not put queue lengths in tiiormation exchanges among the DCs, we assume that each
optimization objective, the resulting data-transfertagecould DC can only extend the forwarding path segmenta&thops
become an issue. Specifically, the store-and-forward sehefti Mot within one TS. Iihines5-13,DC : tries to determine
and hop-by-hop bandwidth allocation governedAlgorithm Fhe new pandw!dth allocation on each I|nI§ that origins from
1 could induce relatively long latency. For instance, in.Fg it. _Specmcally,Llne 5 calculates the bandwidth aIIocatu_Jn by
the data inDC s needs to be sent tBC d. Then, the data- USING LP—rt_—zIaxann to solve the problem_of Eq. (37) with the
transfer will take at least 3 TS’ if the data is forwarded hogEonstraint in Eq. (39). And we also forbid the data-trarsfer
by-hop ons-u-v-d. Moreover, store-and-forward might causdh the reverse direction in t.he sub§equent iteratiturses 12-
routing loops,i.e., data can be forwarded back and forth in 43 UPdate the corresponding variables. We perform message
loop before reaching its destination DC. Note that, thenigge €*Changes among DCs and update other variablesrias
can be reduced, if we modify the bandwidth allocation schentd 17+ Although the data-transfer acceleration increases
to bypass certain intermediate DC(s). Hence, we designea ddfformation exchanges iGlobalAny each DC siill only needs
transfer acceleration scheme for this purpose. to exchange mfo_rmatlon W|th_ its adjacent DCs. And at Ia&?t,.w

The basic idea of the data-transfer acceleration is that Rf"form the residual bandwidth allocation for the remagnin
each TS, we make the DCs calculate bandwidth allocatiggt@ inLines19-29, which is similar td3lobalAnyalgorithm.
collaboratively in multiple iterations to determine a famding V& denote the algorithm that incorporates the data-transfe
path segment instead of the next hop for each data-orienfi&feleration scheme &lobalAny Ext
task. For instance, in Fig. 3, we makR&s s, u andw calculate
the bandwidth allocation scheme in three iterations to get u V1. PERFORMANCEEVALUATION
the direct-transfer patk-u-v-d. Firstly, DC s determines the  Numerical simulations with two different topologies are
bandwidth allocation on linKs,») and forwards the related performed to evaluate our proposed algorithms. One is the
information toDC «. Note that herePC s only lets DC «  full-mesh 7-node Amazon EC2 network topology in [40]. We
know that the data will go through it, but the actual datd stihdopt the same link bandwidth and scale down the link cost
stays inDC s. Then,DC « updates its queue as it has alreadwith 10~° proportionally for normalization. The other is the
received the data, obtains the bandwidth allocation on lilk-node B4 topology in [12]. The link available bandwidth
(u, v), and sends the related informatiorD€ v. DC v repeats is randomly selected withifl0, 100] Gb/s, whose unit cost
the same procedure to get the bandwidth allocation on lifgk [1,10] x 10~2 per Gb/s. The number of task categories,
(v,d). All these operations are performed within one TS, ande, |K|, is set as 100. The arrivals of the data-oriented tasks
then we start the actual data-transfer. Note that when ttzeisla follow the uniform distribution, and the time average aativ
sent out fromDC s, each intermediate DC ostu-v-d checks rate is half of the maximum valuee., 1 A7*e*. The data-size



Algorithm 3 GlobalAnywith Data-Transfer Acceleration

Input:

Q(t)a {Bi,v}v {va(t)}

1 FF, =1, bF,(t) =0, Vi,v,k, n=0;
2: while n < M do

3:
4.

10:
11:
12:

13:
14:

15:
16:
17:
18:

© e Nowu

sort{v, k} in descending order aB}

n=mn + 1;
get {N, ”}, Yo, k} with LP-relaxation of Eq. (37) and
the constraint in Eq. (39);
Nzku = I_vajv Vo, k;
for each{v, k} do

if NJ, >0 then

EF, =0;

end if
end for
b'ﬁv(t> = b'ﬁv(t> + Ni]ffu ! 5]67 V’U, k;
Bi,v = Biv - ZNk . 5]6) vva
exchang i kL Fl’fZ and Nk with adjacent DCs;
Q) = @FH — (TN, £, YONE )-8, Yk
exchange queue Iengths Qf(?t) with adjacent DCs;
updateBY’, (¢) with Eq. (31);

end while

U(t) - Ok;

19: for each{v, k} in sorted ordedo

20: if BF,(t) >0 then

21 A= Lmax(min((%{."(t),Bq,,v),O)J;
k

220 bE,(t) = bF, () + A 0

22 QHH=QH) - A by

24: Bi,v = Bi,v — A - O;

25:  else

26: break;

27.  end if

28: end for

of each category, is randomly selected withirl, 10] M-

DC;
Al()
Tasks from
Tasks from, Adjacent DCs
Adjacent DCs
Zb‘m"(‘) P
12 2,2 IDI,2
e o) e[ Seio
Zb” (t
v
1 1 1 m
Q10 Qi2)| Qjp(t Q. i(t) 11t) ||D\
Zm
Tasks to Tasks to
Adjacent DCs Adjacent DCs
Zb (t) Zbu(‘) lel‘(‘) IT Resources Zbu(‘) bin‘l,z(t)

Fig. 4. LocalAnyscenario for scheduling data-oriented task®@ :.

GlobalAny Ext becomesGlobalAnyas M = 1 in the EC2
topology. For the B4 topology, we hav®/ = 5. TS is set

as 1 minute and we simulate 10,000 TS’ in each simulation.
Table 1l summarizes all the key simulation parameters. In
the simulations, we introduce two performance metrigs,

the time-average delay and throughput. Here, we adopt

to denote the average delay of all the processed tasks, and
represent the time-average throughput, which is the aeerag
amount of processed data per TS in the networkl’ as

A. Benchmark Algorithms

1) LocalAny: A more straight-forward idea to schedule the
data-oriented tasks is that when a task is generated, itsesou
DC decides whether to serve it or not and where its destimatio
DC should be in one shot. As the destination DCs are selected
locally in source DCs, we name this scheduling algorithm as
LocalAny Here, forLocalAny Q7 ;(t) is used to denote the
gueue that stores all the tasks that belong tokttle category
and haveDC j as the destination DC. IBC i, we usea; ;(t)
to denote the accepted tasks that hBg j as the destlnatlon

bits. The source and destination DC sets of each category BE. andbj’ k() to denote the allocated bandwidth on lifiko)

also randomly selected and do not overlap. The IT resour
in each DC are set ag)?*, and the number ok-th category

Cf8§thetasks that target ©C j, respectively, while* (¢) is the

allocated IT resources for task processing. Then, the queue

tasks that can be processed with a unit IT resource in one 'Fén task acceptance and transfer are updated as
i.e, ug, is selected withir{1, 10].

TABLE 1l
SIMULATION PARAMETERS

|K], number of task categories 100
0, data-size ofk-th category tasks [1,10] M-bits
ay, revenue coefficient ok-th task category [0.01,0.1]
Y&, revenue coefficient obC ¢ 1,2] x 10=3
p;, cost coefficient oDC 4 1,2] x 10~ %
wy, weight of k-th task category [0.1,1]
Ape®, maximum arrival-rate ok-th category 100
C;, the amount of IT resources IDC 10%
1k, number ofk-th category tasks that unit IT resourde [1,10]
can process in one TS

At, duration of one TS 1 minute
TS’ in each simulation 10000

Qixt+1)=nwx<Q§Aﬂ—— > @fuL0>
{v:(i,v)e€}

. 40
Y B a0 @)
{v:(v,i)e€}
{i,d, k4,5 €Dyi# 5,k ¢ Ki}.
The queues for task processing are updated as
Qfl(t +1) =max (sz(t) — cf(t) -k, O)
(41)

+ > bk, vieDkeki
{v:(v,i)€E}
Fig. 4 shows an example on the data-transfer WwitbalAny
where for simplicity, we only include two task categoriese W

For the data-transfer acceleration, we determifieas the assume thaDC i is the source DC of tasks in the first category

diameter of the topologyi.e., the maximum hop-count of and it is the destination DC of the tasks in the second cayegor
the shortest paths between DC-pairs in the network. Hence,, i € S; andi € D,. The destination DCs of the tasks are



x10°

determined when they are accepted. Then, the newly accepted 1o0—— : : : : —s
tasks and those from adjacent DCs will be inserted into the oo : : - : :
corresponding queues. We allocate IT resources to the tasks e
that arrive at their pre-selected destination @), the tasks
in Q7,(t) in Fig. 4. And the bandwidth allocation for other
gueues is performed afterwards.

With the Lyapunov optimization techniques, we get the
optimization for the task acceptancelincalAnyas

Minimize »_ QF;(t)-af;(t) — XF(t) - 6k - af (2),
J

~
S

@
S

aop-]

=

Time—Average Profit P
S g
ok
e &

Average Queue Length

st. 0<alf(t)<AF®), Vi, k, (42)

ok () = a’v“(t) ik Fig. 5. Impacts ofi” on GlobalAnyand LocalAny
7,7 K3 ) s fve

Here, {Xk(t),Vi, k} are still the virtual queues. Supposing ] S A S S e — R
that we have already got the optimal solution df(t) as ol ooo =
. . . u o
a¥(t)*, we can reduce the optimization to Z 7 oco &
S 4 S
Minimize ZQf] (t) - aﬁj(t), ) : | =
N © [}
J . . (43) :?-’ 4‘;:::——0—0—0——0\0——0—0——*1500 g
s.t. Zai,j(t) =a; (t), Vi, k. UE-’ ] —a— o —1000%
j = T +E 500 g
1 I% £

0 0

And af ;(t)* can be obtained as

11 12 13 14 15 16 17 18
Service Differentiation Factor ¢

i
[
©

PN ok
* a; ()", j=argmin{Q;,(t),Vv € Dy},
{ (44)  Fig. 6. Impact of task category weight; .

0, otherwise

which means that all the newly-generated requests should be
allocated to the shortest feasible queue. Then, we put th Parameter Analysis
optimal solutionaﬁﬁj(t)* into Eqg. (42), and get ' . o . _
1) Adjustable Parameter’: We first investigate the impact
Minimize (Qf j+(t) — X (¢) - ) - af (¢), (45) ©f parameterV’. Fig. 5 shows the time-average proftt for
st 0<af(t) < A¥(t), Vi, k, GlobalAnyand LocalAny We can see that faBlobalAny P
increases with/ faster whenl” is smaller. Eventually, when
V' keeps increasingP would converge to its optimal value
smoothly, which verifies that the time-average prdfitcan
- AR, QF ;. (t) < XE(t) -6y, approach to the optimal value arbitrarily within a constant
a; (t) = (46) gapO(+-). We notice thaGlobalAnyachieves a higher profit
) . P thanLocalAny In Fig. 5, we also plot the average value
_T_he data—tran_sfer and task processing LiocalAny are  of the total time-average queue length in each D@,
similar to those inGlobalAny H(_)wever, withLocalAny th(_a 0= ‘_71)‘ S QF(#) for GlobalAnyand @ = L 3~ QF () for
tasks can only be processed in the pre-selected destination e ik
DCs, rather than any feasible ones. LocalAny It can be seen that for the sanig the @ from
2) LocalAnyExt: Similar to GlobalAny Ext, we refer to GlobalAnyis less than that frorhocalAny and this advantage
the algorithm that incorporates the data-transfer acatter becomes more obvious whén increases.
scheme inLocalAnyas LocalAny Ext We use it as another 2) Category Weightv,: As explained in Section IVGlob-
benchmark algorithm in the simulations. alAny can provide differentiated services to different task
3) Benchmark AlgorithmsMoreover, we also compare thecategories by adjusting their weigh{sv,}. To demonstrate
performance of our proposed algorithms with several exgsti this feature, we multiply the weight of the first task catggor
ones. The first one is to transfer the tasks to their destinatii.e., w;, with a parameteé@, and keep the remaining weights
DCs directly, i.e,, the direct-transfer §T). Specifically, in unchanged. Here, we usP; to denote the average task
each TS, the source DC selects the destination DC for egmiecessing delay of the first category, while the averagaydel
newly-generated task randomly and then network bandwidthother categories are denotedas,. 77 and7_; are used to
is allocated by calculating the multi-source multi-deatian denote the throughput of the first category and other caiegor
maximum flow. If bandwidth is insufficient, the task is butidr respectively. Fig. 6 shows the results on task processitay de
in its source DC until there is enough out-bound bandwidtand throughput for differerét, which indicate thaf>; decreas-
The second ond,e., TEN-SnF adopts the store-and-forwardes withf, andT; increases witlf. This is because more tasks
scheme with the time-expanded networking technique in,[10h the first category can be accepted with a larger and
and selects each task’s destination DC randomly. since we would allocate more bandwidth and IT resources to

wherej* = argmin{Qf ,(t), Vv € Dy} refers to the shortest
feasible queue iDC i. Finally, the optimal solutiom? (¢)* is

0, otherwise
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70 the shortest computation time, its performance is signifiga
6 worse thanGlobalAnyand GlobalAny ILP. To this end, we
can see thatlobalAny can obtain near-optimal scheduling
performance with reasonably short computation time.

500

IS
S
S

w
]
3

—m—P, GlobalAny
—m—P, GlobalAny HEU 20

D. Comparison with Benchmark Algorithms

Time-Average Profit P
n
3

Time-Average Delay D

Next, the simulations use different maximum arrival rate
A to emulate the change of traffic loads. Aldis chosen
to balance the profit and delay as much as possibl&fobal-

1 1 1 1 0
500 1000 1500 2000 2500 3000

Maximum Arrival - Rate A" AnyandLocalAny Fig. 8 shows the results on the time-average
profit and average delay from different algorithms. App#ien
Fig. 7. GlobalAnywith different bandwidth allocation policies. GlobalAnyachieves the highest profit among the algorithms,

especially when the traffic load is relatively high. The agpr
task processing dela® from GlobalAnyis shorter than that
from LocalAny while it is longer than those frol®T and
TEN-SnE Actually, the results on average task processing
delay from GlobalAny and TEN-SnF are comparable, but
DT provides fixed and the shortest task processing latency.
However, asDT drops the requests when the system can not
transfer or process them directly and its profit is less tha t
of GlobalAnysignificantly.
T Table 11l shows the results on the average througfpand
Maximum Arrival —Rate Ap™ computation time. We can see thatincreases with4}***
and GlobalAnyprovides the highest’ among the algorithms.
As for the computation timeGlobalAny is at least one-
magnitude faster thaBT and TEN-SnF which verifies that
GlobalAny can successfully address the scalability issue of
this task category, the task processing latency becometeshoDT and TEN-SnFand operate in an online manner. Moreover,
Meanwhile,D_; and7_; stay almost unchanged for differenthe computation time oGlobalAnykeeps steady wheA}***
6. Hence, we verify that the performance of a task categoirycreases, while that FEN-SnFincreases with4;***. This is
can be adjusted adaptively. becauselEN-SnFinvokes more frequent network-expanding
operations whem;*** is larger, which is time-consuming.

o
o

—=-P, GlobalAny ||
=P, Local Any
—@=P, DT

~#—P, TEN-SnF
400 H—e=D, GlobalAny|
=D, LocalAny
=D, DT

=D, TEN-SnF

Time-Average Profit P
3
Time-Average Delay D

Fig. 8. Comparison with benchmark algorithms in EC2 topglog

C. Bandwidth Allocation Policies TABLE IlI

We then simulateGlobalAnywith different bandwidth al- PERFORMANCECOMPARISONS USINGEC2 TOPOLOGY
location and data-transfer polices. Here, we denote the al-
gorithm that solves the integer linear programming (ILP)
model in Eq. (37) for bandwidth allocation and data-transfe
as GlobalAny ILP!. According to the discussion in Section
IV-B3, we can design a simple data-transfer policy that lets
the queue transfer data to the adjacent DCs randomly, if it  -0C3AWY | 127 | 2.14| 2,65 | 57.2 | 584 | 59.6
has the maximum positiveBX, () on multiple links. The DT 140 | 211 2.58 | 357.6| 344.0 | 327.8
algorithm with this policy is denoted a&lobalAny HEU. TEN-SF | 1.43 | 2.17 | 263 | 734.4 | 14328 19250
We setV = 3 x 10* and perform simulations with different
maximum arrival rated;’**. Fig. 7 shows the results oR
and D, which indicate that” increases with4,,., for all the E_ Simulations with B4 Topology

policies. Note that, compared witGlobalAny ILP, GlobalAny Finally, we perform simulations with the B4 topology to

provides similar results o’ gndD, while the performance evaluate the proposed algorithms further. We 4gt* = 100
of GlobalAny HEU on them is much worse. Meanwhile, the . . . .

. : : .and chang®  to investigate the impacts of parametérFig. 9
average computation time to get the bandwidth allocation

. . shows the time-average profttand average total queue length
scheme for a DC in a TS i82.7 msec,19.1 msec andl25.3 =
msec, withGlobalAny GlobalAny HEU andGlobalAny ILP, @ from GlobalAny GlobalAny ILP, andGlobalAny Ext We

. . A observe that bott® and( increase with” and then converge
respectively. Therefor&lobalAnycan achieve the similar task, .. ! S )

: . to fixed values, which show similar trends as those obtained
scheduling performance &lobalAny ILP, with much shorter . h th > | dth ¢ fobal
computation time. Even thoug&lobalAny HEU consumes with t e_E_C topology. And the per ormance@ : aAnygn

' P and @ is close to that ofGlobalAny ILP. It is interesting
LCPLEX is used to solve the ILP, and all the simulations in praper run O S€€ that the profit froBlobalAny Ext is higher than that
on a computer with an Intel CPU (13-2120, 3.30GHz) and 8 GB mym  from GlobalAnyand the@ from GlobalAny Ext is less than

Average Throughput] Computation Time
(x10%) (msec)
Aper | 300 | 600 | 900 | 300 [ 600 | 900

GlobalAny | 1.46 | 2.32 | 2.76 | 29.5 31.2 30.6
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o —=—D, GlobalAny s 16

guo ——P. GlobalAny 1LP [1° & a

o —9—P, GlobalAny Ext || 8 S

% 9ok -a GlobalAny (4] % 100

2 IO GlobalAny ILP| | 3 o GlobalAny

g Q. GlobalAny Ext 8 g’ 10 —*—D: Glol)alAn;',Ext

> 70 1° o © D, LocalAny

<-( g’ g 8 —e—D, LocalAny_Ext

£ o 5 < Jl=en or

Z 3: g . TEN-SnF

Z 4
30
ZI>4~: 7 w K
) i ° 5(.)0 10.00 15.00 20.00 25.00 3000
Fig. 9. Impacts ofi’ in B4 topology. Maximum Arrival — Rate A
Fig. 11. Time-average task processing delay in B4 topology.
2000 T T
—@—P, GlobalAny
1800 | _g—P, GlobalAny_Ext
| |—8-P, LocalAny i . R .
00 b LocalAny Ext e transfer acceleration) outperformed several existingrétlyns
‘S 1400 f-|—m=P, DT — . . . L .
2 i | S in terms of both time-average profit and computation time.
Q
j=2
g 1000 . TABLE IV
Z soof = 1 PERFORMANCECOMPARISONS USINGB4 TOPOLOGY
GEI) 600 "
= 400 Average Throughput] Computation Time
200 (x106) (msec)
0 5(;0 10.00 15.00 20.00 25.00 3000 AZ“I“" 300 | 600 | 900 300 | 600 | 900

Maximum Arrival — Rate A}

GlobalAny 0.61 | 1.01| 1.13 53.1 56.4 57.1
LocalAny 0.47 | 0.73 | 0.89 98.2 98.7 99.6
GlobalAny Ext | 0.65 | 1.15 | 1.43 | 2544 | 261.2 | 263.8
LocalAny Ext | 0.54 | 0.89 | 1.09 | 435.1 | 457.7 | 431.6

DT 0.68 | 1.07 | 1.19 | 1962.3 | 1962.5| 1960.5
that from GlobalAny The results verify the effectiveness of TEN-SnF 073 1225 | 1.36 | 2055.1 | 3885.1 | 8847.1

the data-transfer acceleration scheme.

We also simulate the algorithms with differeAf***. Figs.
10 and 11 show the results on the time-average profind ACKNOWLEDGMENTS
average task processing deldy respectively. It can be seen
clearly that the algorithms with the data-transfer acesien

Fig. 10. Time-average profits in B4 topology.
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the other algorithms. When comparing it wi@lobalAny we 1] 3. Yao, P. Lu, L. G 47 7hu “On fast and dinatiad

. . . . . Yao, P. Lu, L. ong, an . u, N 1ast ana coordina a
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just slightly longer computation time. Note that, althougk Technol, vol. 33, pp. 30053015, Jul. 2015.

running time does become longer BlobalAny Ext, it is still 2] P. Lly et al, “.Hingy-{efficient ?ata m(ijgration and bacgllig é%r sig data
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