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Abstract—As there is an increasing trend to deploy geographi-
cally distributed (geo-distributed) cloud datacenters (DCs), the
scheduling of data-oriented tasks in such cloud DC systems
becomes an appealing research topic. Specifically, it is challenging
to achieve the distributed online scheduling that can handle
the tasks’ acceptance, data-transfers and processing jointly and
efficiently. In this paper, by considering the store-and-forward
and anycast schemes, we formulate an optimization problem
to maximize the time-average profit from serving data-oriented
tasks in a cloud DC system and then leverage the Lyapunov
optimization techniques to propose an efficient schedulingalgo-
rithm, i.e., GlobalAny. We also extend the proposed algorithm
by designing a data-transfer acceleration scheme to reduce
the data-transfer latency. Extensive simulations verify that our
algorithms can maximize the time-average profit in a distributed
online manner. The results also indicate thatGlobalAny and
GlobalAny Ext (i.e., GlobalAny with data-transfer acceleration)
outperform several existing algorithms in terms of both time-
average profit and computation time.

Index Terms—Datacenter networks, Lyapunov optimization,
Distributed online scheduling, Data-transfer acceleration.

I. I NTRODUCTION

NOWADAYS, there is an increasing trend to deploy ge-
ographically distributed (geo-distributed) cloud datacen-

ters (DCs) for achieving enhanced user experience and service
availability [1, 2]. In such cloud DCs, emerging applications
usually involve numerous data-oriented tasks [3–7]. These
tasks need to transfer certain amount of data to remote DC(s)
for further processing. For instance, e-Science and backup
applications may need to transfer data among multiple geo-
distributed DCs [8, 9]. As the data-oriented tasks can cause
high-capacity data-transfer among DCs, they would impact
the service capacity and resource management in cloud DC
systems significantly. Therefore, we need to schedule them
adaptively to ensure efficient DC operations.

The scheduling of data-oriented tasks bears some interesting
features. First of all, the data-transfers can utilize the anycast
routing scheme,i.e., data can be forwarded to and processed
by any DC within a destination DC set. For example, the data
backup tasks can use the mutual backup model [1] and choose
any DC within a backup group as its backup site. Secondly, the
data-transfers usually can tolerate certain setup delay [10–13].
Hence, they can leverage the store-and-forward scheme [10].
Specifically, the intermediate DCs along the routing path can
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store the data when the subsequent network link is congested,
and send it out to the destination DC later. Note that, these
features make the scheduling of data-oriented tasks more
flexible, and hence we need to incorporate more sophisticated
scheduling algorithms. Moreover, the tasks are usually highly-
dynamic, and their arrival pattern can hardly be predicted.
Therefore, we need to find the optimal scheme to schedule
them in an online manner without much pre-knowledge on
the arrival pattern, which is obviously challenging.

In this work, by considering the anycast and store-and-
forward schemes, we investigate how to allocate network
resources and IT resources to support the data-oriented tasks
dynamically and cost-effectively,i.e., maximizing the time-
average profit. Here, the profit is the margin between the
revenue from task serving and the cost due to resource con-
sumption. We formulate the optimization problem and design
a distributed online scheduling algorithm,i.e., GlobalAny, by
leveraging the Lyapunov optimization techniques [14]. With
GlobalAny, the destination DC of a task can be adjusted adap-
tively during the data-transfer, rather than being determined
in its source DC directly. Our proposed algorithm maximizes
the time-average profit in a distributed online manner and
obtains the profit that is arbitrarily close to the optimal value.
We then extend it by designing a data-transfer acceleration
scenario to unify the benefits of direct-transfer and store-and-
forward schemes. Finally, extensive simulations are performed
to evaluate the performance of the algorithms and the results
indicate that they can outperform several existing algorithms
in terms of both time-average profit and computation time.

The rest of the paper is organized as follows. Section II
reviews the related work, and we formulate the problem in
Section III. The distributed scheduling algorithm is proposed
in Sections IV. Section V describes the data-transfer acceler-
ation scenario and the performance evaluation is discussedin
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

Previously, people have studied the task scheduling across
cloud DCs with the objectives of load balancing [15] and
budget minimizing [16]. Meanwhile, task scheduling was also
considered for the Big Data applications [17–19]. However,
these investigations did not address the data-transfer process in
inter-DC networks, and might lead to long processing latency.

In order to handle inter-DC traffic well, researchers have
considered the store-and-forward scheme for traffic scheduling
[10, 20]. The authors of [10] studied the store-and-forward
and time-expanded networking schemes for minimizing data-
transfer time. The work in [20] tried to maintain the service
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fairness for data-transfers with the store-and-forward scheme.
Note that, these studies optimized the scheduling of data-
transfers based on the pre-knowledge of their arrival patterns,
and thus could only get the optimal solution for certain time
period. Moreover, the computational complexity of their ap-
proaches increased significantly with the length of the period.

From the perspectives of network framework and protocol,
the studies in [21–24] and [25–28] have considered how to
realize virtual network embedding (VNE) and network func-
tion virtualization (NFV) in inter-DC networks, respectively,
and Kettimuthuet al. [29] have tried to optimize the data-
transfers in cloud DC systems. With the software-defined
networking (SDN) based scheduling schemes, Google and
Microsoft have developed systems such as B4 [12] and SWAN
[30], respectively, to manage the inter-DC traffic in their DCs.
Wu et al. investigated the data-transfers across SDN-controlled
geo-distributed DCs in [31]. Our work is different from these
studies, as we do not require centralized network control and
management (NC&M) and the proposed algorithms can be
implemented in a truly distributed way.

It is known that Lyapunov optimization techniques can be
used to design online scheduling algorithms that can arbitrarily
close to the time-average optimum without any pre-knowledge
on the requests’ arrival patterns [14]. Hence, they have been
used to solve the scheduling problems in cloud computing
[32], DC power management [33],etc. In [34], Liu et al.
leveraged the Lyapunov optimization techniques to addressthe
task scheduling and server/virtual machine (VM) management
within a single DC. However, they did not consider how to
determine the routing path and bandwidth allocation for the
data-transfer of each task, which is essential for scheduling the
data-transfers in inter-DC networks. Hence, their algorithms
cannot be used to solve the problem studied in this work.
Previously, with the Lyapunov optimization techniques, people
have proposed the back-pressure algorithm to manage the data-
transfers in multi-hop wireless networks [35]. However, itis
known that this scheme can cause long and unnecessary data-
transfer latency, especially when the traffic load is relatively
low. Even though the data-oriented tasks can be delay-tolerant,
obsessively long latency can still impact user experience.
Hence, the data-transfer latency of the back-pressure algorithm
has been addressed in [36, 37]. In [36], the authors tried
to perform routing path selection based on the information
of the shortest paths, while the technique based on shadow
queues was proposed in [37], to shorten the data-transfer
latency. However, these studies were still based on the hop-
by-hop store-and-forward scheme, which cannot reduce the
data-transfer latency to the maximum extent.

III. PROBLEM FORMULATION

A. Network Model

We consider a geo-distributed cloud DC system as shown
in Fig. 1. To facilitate distributed online task scheduling,
the system operates based on discrete time-slot (TS) with
a duration of∆t. Note that in a real cloud DC system,
∆t can range from a few seconds to several minutes [34],
depending on the traffic dynamics. Specifically, it should be

Fig. 1. Geo-distributed cloud DC system that carries data-oriented tasks.

sufficiently long for the system to implement the updates from
the scheduling algorithm,w.o.l.g., we normalize TS in the rest
of the paper. Hence, we have∆t = 1, and the system timet
is t ∈ {1, 2, · · · }. There are multiple DCs in the system, and
we denote the network asG(D, E), whereD is the DC set
(D = {1, . . . , |D|}) andE represents the set of inter-DC links.
Generally, cloud DC provides numerous computing, storing
or I/O resources in the form of VM for task processing. In
this paper, we use IT resources to represent the resources
that would be used to process the data-oriented tasks and
assume the available IT resources inDC i is Ci. The available
bandwidth on link(i, v) ∈ E is Bi,v, wherei andv represent
two adjacent DCs in the network (i, v ∈ D).

In order to mimic the real cases, we assume that the data-
oriented tasks in the cloud DC system can be classified into
|K| categories and denote the set of categories asK. Each
category has its own source and destination DC sets and data-
size. Specifically, for thek-th category, the tasks are generated
in a DC in source DC setSk ⊂ D to deliver a block ofδk
data to any DC in destination DC setDk ⊂ D for further
processing. For instance, for the first category in Fig. 1, the
tasks originating fromDC 2 need to deliver certain data toDC
4 or 5. Apparently, as we consider inter-DC traffic, the source
and destination DC sets should not overlap,i.e., Sk ∩ Dk =
∅, ∀k ∈ K. A weight coefficientwk is assigned to thek-
th category to facilitate differentiated services. We useKi to
represent the set of categories that can be processed inDC i.
Table I lists the key notations used in the paper.

We useAmax
k to denote the maximum number ofk-th

category tasks generated per TS. Then, the arrival rate for
thek-th category tasks inDC i at timet (i.e., Ak

i (t)) satisfies

0 ≤ Ak
i (t) ≤ Amax

k · I{i∈Sk} ∀i, k, (1)

whereI{i∈Sk} is a boolean flag to indicate whetherDC i is
included in source DC setSk, as

I{i∈Sk} =

{

1, ∀i ∈ Sk,

0, ∀i /∈ Sk.

B. Data-Oriented Tasks Scheduling in DCs

1) Task Acceptance:With the anycast scheme, the destina-
tion DC of a task can be adjusted by any of the intermediate
DCs along its routing path, before it finally reaches a feasible
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TABLE I
KEY NOTATIONS

Ak
i (t) number ofk-th category tasks generated inDC i at time t

aki (t) number ofk-th category tasks accepted inDC i at time t
Qk

i (t) queue fork-th category tasks inDC i at time t
Xk

i (t) virtual queue fork-th category tasks inDC i at time t
xk
i (t) number of tasks accepted forXk

i (t) at time t
bki,v(t) amount ofk-th category data that is sent over link(i, v) at

time t

cki (t) amount of IT resources allocated tok-th category tasks inDC
i at time t

destination DC. As the destination DCs are selected in a
global manner, we name this scheduling scheme asGlobalAny.
Specifically, each DC uses the scenario illustrated in Fig. 2
to handle the data-oriented tasks. In each DC, we determine
whether a locally-generated task should be accepted or not
based on the status of a few queues, each of which stores
the tasks to a remote DC. We arrange the queues in each DC
based on the tasks’ categories,i.e., Qk

i (t) denotes the queue
that stores all the tasks that belong to thek-th category inDC
i and it is initialized asQk

i (0) = 0. With all the queues in the
cloud DC system (i.e., {Qk

i (t), i ∈ D, k ∈ K}), we can obtain
the queue matrixQ(t) as

Q(t) =













Q1
1(t) Q2

1(t) · · · Q
|K|
1 (t)

Q1
2(t) Q2

2(t) · · · Q
|K|
2 (t)

...
...

. . .
...

Q1
|D|(t) Q2

|D|(t) · · · Q
|K|

|D|(t)













. (2)

In DC i, the number of acceptedk-th category tasks at time
t is denoted asaki (t), and we have

0 ≤ ak
i (t) ≤ Ak

i (t), ∀i, k. (3)

The time-average expectation ofaki (t) is

aki = lim
t→∞

1

t

t−1
∑

τ=0

E{aki (τ)}, ∀i, k.

2) Data-Transfer with Store-and-Forward Scheme:The
data-transfer in the cloud DC system can be realized with the
store-and-forward scheme [10],i.e., by utilizing the storage
space in the intermediate DCs along the routing path to relay
the data hop-by-hop. It is known that this scheme can provide
higher data-transfer throughput than the one that deliversthe
data end-to-end directly [10].

For data-transfer, a decision variablebki,v(t) is defined as the
amount ofk-th category data that is sent over link(i, v). Here,
DCs i and v are adjacent inG(D, E). Apparently, the total
transferred data should not exceed the available bandwidthon
each link,i.e.,

∑

k

bki,v(t) ≤ Bi,v, ∀i, ∀(i, v) ∈ E . (4)

The time-average expectation ofbki,v(t) is denoted asbki,v.
And the total used bandwidthbi,v(t) can be obtained by
summarizing the bandwidth used by all the task categories,
and its time-average valuebi,v should satisfy

bi,v =
∑

k

bki,v, ∀i, ∀(i, v) ∈ E .

Fig. 2. GlobalAnyscenario for scheduling data-oriented tasks inDC i.

Then, for queueQk
i (t), ∀k /∈ Ki in DC i, we insert both the

locally-accepted and remotely-sent-over tasks (all belonging to
the k-th category), while the sojourn tasks are removed and
sent to the next hop. Since the storage space in a DC is usually
big enough, we can treat the queues as infinite ones. Hence,
Qk

i (t) for task acceptance and transfer is updated as

Qk
i (t+ 1) =max



Qk
i (t)−

∑

{v:(i,v)∈E}

bki,v(t), 0





+
∑

{v:(v,i)∈E}

bkv,i(t) + ak
i (t) · δk, ∀i, k /∈ Ki.

(5)

3) Task Processing:When a task arrives at one of its
feasible destination DCs, it is inserted into the queue for final
processing and will not be sent to other DCs anymore. Then,
the destination DC allocates IT resources to process the task.
We denote the allocated resources to thek-th category tasks
in DC i ascki (t). Apparently, the total amount of IT resources
should not exceed those available in each DC, as

∑

k

cki (t) ≤ Ci, ∀i. (6)

Similarly, we denote the time-average expectation ofcki (t) as
cki . Then, as for queueQk

i (t), ∀k ∈ Ki in DC i, the remotely-
sent-over tasks are added and the sojourn requests are removed
for final processing. We useµk to denote the number ofk-
th category tasks that unit IT resource can process per TS.
Hence, we can update the queue for task processing as

Qk
i (t+ 1) = max

(

Qk
i (t)− cki (t) · µk · δk, 0

)

+
∑

{v:(v,i)∈E}

bkv,i(t), ∀i, k ∈ Ki.
(7)

Fig. 2 gives an example to illustrate theGlobalAnyschedul-
ing scheme. We assume that there are four categories of tasks
running in the cloud DCs.DC i is the source DC of tasks
belonging to first two categories, and it is also a destination DC
of the tasks in the last two categories,i.e., Ki = {3, 4}. Firstly,
the tasks generated as ones in the first two categories will be
accepted or dropped. Then, the accepted ones and tasks from
adjacent DCs will be inserted into the corresponding queue
Qk

i (t). If the tasks can be processed inDC i (i.e., they are
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in the last two categories), we should allocate IT resourcesto
process them. Otherwise, we should transfer the tasks to the
adjacent DCs. And all the tasks are transferred according to
this strategy until they arrive at one of their destination DCs.
In addition, Eqs. (5) and (7) indicate that the more bandwidth
resources and IT resources be allocated, the faster the tasks
can be transferred and processed.

C. Profit-Driven Optimization Model

The discussion above indicates that the data-oriented tasks
consume both bandwidth resources in the network and IT
resources in the DCs and there is a tradeoff between the
tasks processing latency and resource consumption. Since the
customers in the multi-DC system connect to their source DCs
and can submit data-oriented tasks there, we formulate a profit
model by considering the revenue from serving the tasks and
the cost due to the usages of bandwidth and IT resources. The
revenue is calculated based on two payments. The CSP gets
the first payment from the customer who submits the task,
when the corresponding source DC accepts the task. And the
second payment comes in (i.e., also from the customer) when
the task’s data has been processed by its destination DC. As
the DCs handle task acceptance and processing separately,
the revenue model addresses the two important milestones of
serving a data-oriented task in the multi-DC system with the
two payments. Apparently, the revenue from the first payment
is related to the time-average expectation of task acceptance
rates, i.e., {aki , ∀i, k}. Here, we use a logarithmic utility
model, which follows the law of diminishing marginal utility
[34] and is widely used in previous work.

f1(a
k
i ) = log(1 + αk · ak

i ), ∀i, k, (8)

whereαk is the revenue coefficient for thek-th task category.
The second payment is based on the number of tasks that
have been processed. At timet, the number of processedk-th
category tasks ismk(t), as

mk(t) =
∑

i

cki (t) · µk, ∀k. (9)

The time-average expectation ofmk(t) is mk. Then, with the
linear utility model in [38], we get this part of revenue as

f2(mk) = γk ·mk, ∀k, (10)

whereγk is the coefficient for tasks in thek-th category.
The cost of the bandwidth usage on link(i, v) ∈ E is

h1(bi,v) = βi,v · bi,v, ∀(i, v) ∈ E , (11)

whereβi,v is the cost of unit bandwidth usage on link(i, v).
The last part of cost comes from the IT resource usage due
to the store-and-forward operations. At timet, the amount of
data that arrives at an intermediateDC i and will be forwarded
to a remote DC later isni(t), as

ni(t) =
∑

k,v:(v,i)∈E

bkv,i(t) · I{k/∈Ki}, ∀i, (12)

and the time-average expectation ofni(t) is ni. Then, the
time-average cost due to IT resource usage inDC i is

h2(ni) = ρi · ni, ∀i, (13)

whereρi is the cost coefficient of the IT resources used by
the store-and-forward operations inDC i.

Finally, the time-average profit from serving the tasks can
be obtained as

P =
∑

i,k

f1(a
k
i ) +

∑

k

f2(mk)−
∑

i,v

h1(bi,v)−
∑

i

h2(ni). (14)

Here, we try to maximize the time-average profit while all
the constraints should be satisfied. In addition, all the queues
in the system should keep stable, otherwise the processing
latency of accepted tasks may be infinite [14]. Hence, the
profit-driven optimization is modeled as

Maximize P,

s.t. Eqs. (1) - (7),

Qk
i (t) keeps stable, ∀i, k.

(15)

IV. GlobalAnySCHEDULING ALGORITHM

A. Lyapunov Optimization Techniques

We use the Lyapunov optimization techniques to solve the
optimization in Eq. (15) and develop a profit-driven distributed
online scheduling algorithm. As the utility functionf1(·) is
nonlinear, we first introduce an auxiliary variable,xk

i (t), to
transform the original problem into the standard drift-minus-
profit framework in Lyapunov optimization, as

0 ≤ xk
i (t) ≤ Amax

k · I{i∈Sk}, ∀i, k. (16)

And we denote the time-average expectation ofxk
i (t) asxk

i .
Then, the original problem is transformed into

Maximize
∑

i,k

f1(xk
i ) +

∑

k

f2(mk)

−
∑

i,v

h1(bi,v)−
∑

i

h2(ni),

s.t. Eqs. (1) - (7),

xk
i ≤ ak

i , ∀i, k,

Qk
i (t) keeps stable, ∀i, k,

(17)

where we have

f1(xk
i ) = lim

t→∞

1

t

t−1
∑

τ=0

E{log(1 + αk · xk
i (τ ))}, ∀i, k.

Then, we use the virtual queues,{Xk
i (t), ∀i, k} with initial

values asXk
i (0) = 0, to transform the constraint

xk
i ≤ aki , ∀i, k,

in Eq. (17) into a queue-stable problem [14]. Similar toQ(t)
in Eq. (2), we useX(t) to denote the queue matrix for
{Xk

i (t), ∀i, k}, andXk
i (t) is updated as

Xk
i (t+ 1) = max(Xk

i (t)− ak
i (t) + xk

i (t), 0) ∀i, k. (18)

Let Ω(t) = [Q(t),X(t)], and we define the Lyapunov
functionL(Ω(t)) as

L(Ω(t)) =
1

2







∑

i,k

(Qk
i (t) · wk)

2 +
∑

i,k

(Xk
i (t) · ηk)

2







, (19)

The Lyapunov drift function is the conditional expectationof
the Lyapunov function in Eq. (19) for different TS’, as

∆(Ω(t)) = E{L(Ω(t+ 1)) − L(Ω(t)) | Ω(t)}. (20)
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If we defineζ(t) as

ζ(t) =
∑

i,k

f1(x
k
i (t)) +

∑

k

f2(mk(t))

−
∑

i,v

h1(bi,v(t))−
∑

i

h2(ni(t)),

the drift-minus-profit expression can be obtained as

Φ(Ω(t)) = ∆(Ω(t))− V · E{ζ(t) | Ω(t)}, (21)

whereV is the tradeoff parameter to balance the queue lengths
and the time-average profit. Eq. (21) satisfies the inequality
below because[max(q−c, 0)+a]2 ≤ q2+a2+c2+2q(a−c).

Φ(Ω(t)) ≤ B + Φ1(Ω(t)) + Φ2(Ω(t)) + Φ3(Ω(t)) + Φ4(Ω(t)),
(22)

whereB is a constant that satisfies

B ≥
1

2
·
∑

i,k

E

{[

ak
i (t)− xk

i (t)

]2

· η2
k

+

[

(
∑

v

bkv,i(t) + ak
i (t) · δk)

2 + (
∑

v

bki,v(t))
2

]

· w2
k · I{k/∈Ki}

+

[

(
∑

v

bkv,i(t))
2 + (cki (t) · µk · δk)

2

]

· w2
k · I{k∈Ki} | Ω(t)

}

.

AndΦ1(Ω(t)), Φ2(Ω(t)), Φ3(Ω(t)) andΦ4(Ω(t)) have the
expressions as

Φ1(Ω(t)) =
∑

i,k

E{Xk
i (t) ·η

2
k ·x

k
i (t)−V ·f1(x

k
i (t)) | Ω(t)}, (23)

Φ2(Ω(t)) =
∑

i,k

E{Qk
i (t)·δk · w2

k · ak
i (t)

−Xk
i (t) · η

2
k · ak

i (t) | Ω(t)},

(24)

Φ3(Ω(t)) =
∑

i,v,k

E{Qk
i (t) · (b

k
v,i(t)− bki,v(t)) · w

2
k

+ V · (βi,v + ρv · I{k/∈Kv})) · b
k
i,v(t)|Ω(t)}.

(25)

Φ4(Ω(t)) =
∑

i,k

E{(−Qk
i (t) · w

2
k · cki (t) · µk · δk

− V · cki (t) · γk · µk) · I{k∈Kv} | Ω(t)}.
(26)

B. Distributed Online Scheduling

We design a scheduling algorithm (i.e., GlobalAny) to
handle the auxiliary variables, tasks’ acceptance, data-transfers
and processing in an online and distributed manner. We will
also verify that only small communication overhead is needed
for information exchange.

1) Auxiliary Variables:We can get the optimal solutions of
{xk

i (t), ∀i, k, t} by minimizing Eq. (23). For these indepen-
dent variables, we have

Minimize Xk
i (t) · η

2
k · xk

i (t)− V · log(1 + αk · xk
i (t))

s.t. 0 ≤ xk
i (t) ≤ Amax

k , ∀i, k,
(27)

and the optimal solutions of{xk
i (t), ∀i, k, t} are

xk
i (t)

∗
=



































0, Xk
i (t) >

V · αk

η2
k

,

V

Xk
i (t) · η

2
k

−
1

αk
, Xk

i (t) ∈

[

V · αk

(1 + αk ·Amax
k ) · η2

k

,
V · αk

η2
k

]

,

Amax
k , Xk

i (t) ∈

[

0,
V · αk

(1 + αk ·Amax
k ) · η2

k

)

.

(28)
2) Task Acceptance Policy:When the real queue is not

longer than the virtual queue,i.e., Qk
i (t) ≤ Xk

i (t) · δk,
GlobalAnyshould accept all the newly-generatedk-th category
tasksAk

i (t) in DC i at timet, otherwise, it should drop all of
them. This is because we can get the optimal task acceptance
policy by minimizing Eq. (24), as

Minimize Qk
i (t) · δk · w2

k · ak
i (t)−Xk

i (t) · η
2
k · ak

i (t),

s.t. 0 ≤ ak
i (t) ≤ Ak

i (t) · I{i∈Sk}, ∀i, k,
(29)

and thus the optimal solutionaki (t)
∗ is

ak
i (t)

∗
=

{

Ak
i (t), Qk

i (t) ≤ Xk
i (t) · δk,

0, otherwise.
(30)

3) Bandwidth Allocation: To get the optimal bandwidth
allocation, we first defineBk

i,v(t) as

Bk
i,v(t) =(Qk

i (t)−Qk
v(t)) · w

2
k

− V · (βi,v + ρv · I{k/∈Kv}), ∀i, v, k.
(31)

Then, we can conclude that if the queue lengths are not
considered,GlobalAny should provide all the bandwidth on
link (i, v) to the queue that has the maximum positiveBk

i,v(t)
at timet. This is because the optimal bandwidth allocation can
be obtained by minimizingΦ3(Ω(t)) in Eq. (25). If the queue
lengths are not considered, we can assume that the bandwidth
allocation would not result in empty queues,i.e., there are
always enough data-transfers on each link. Hence, Eq. (25) is
independent of link status and can be transformed into

Maximize
∑

k

Bk
i,v(t) · b

k
i,v(t)

s.t. 0 ≤
∑

k

bki,v(t) ≤ Bi,v, ∀(i, v) ∈ E ,
(32)

and we can get the optimalbki,v(t)
∗ as follows.

bki,v(t)
∗
=

{

Bi,v(t), k = k∗,

0, otherwise,
(33)

where we have

k∗ = argmax{Bk
i,v(t)|B

k
i,v(t) > 0, ∀k ∈ K}.

Therefore, we verify that in DCi, GlobeAnyshould allocate
the bandwidth on each link to the queue that has the maximum
positive Bk

i,v(t). Note that,Bk
i,v(t) equals to the weighted

differential queue length (i.e., (Qk
i (t)−Qk

v(t))·w
2
k) subtracting

a fixed value, which is determined by the cost of data-
transfer using store-and-forward. AsGlobalAnyallocates the
bandwidth to the task category that has maximum weighted d-
ifferential queue length, we can provide differentiated services
to the task categories by adjusting their weights{wk}.
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However, the analysis above overlooks the scenario that
the queue with the maximum positiveBk

i,v(t) does not have
enough data to fully utilize the allocated bandwidth. For this
scenario, the bandwidth allocation according to the aforemen-
tioned scheme becomes inefficient since bandwidth could be
wasted. Hence, we introduce a new constraint to make sure
that all the allocated bandwidth is fully utilized in each DC.

0 ≤
∑

v:(i,v)∈E

bki,v(t) ≤ Qk
i (t), ∀i, k. (34)

Since each data-oriented task will be forwarded to one and
only one destination DC, the allocated bandwidth should be
in integer times of the data-size of each task category. Thus,
we introduce an integer variableNk

i,v to represent the number
of tasks can be transferred on link(i, v) and we have

bki,v(t) = Nk
i,v · δk, ∀i, k, ∀(i, v) ∈ E . (35)

Then, we design a new optimization model for the data-
transfer in each DC as follows.

Maximize
∑

v,k

Bk
i,v(t) · b

k
i,v(t)

s.t. 0 ≤
∑

k

bki,v(t) ≤ Bi,v, ∀(i, v) ∈ E ,

0 ≤
∑

v:(i,v)∈E

bki,v(t) ≤ Qk
i (t), ∀k,

bki,v(t) = Nk
i,v · δk, ∀k, (i, v) ∈ E .

(36)

And the optimization in Eq. (36) can be rewritten as follows
if we notice the relation betweenbki,v(t) andNk

i,v.

Maximize
∑

v,k

Bk
i,v(t) · δk ·Nk

i,v

s.t. 0 ≤
∑

k

Nk
i,v · δk ≤ Bi,v, ∀(i, v) ∈ E ,

0 ≤
∑

v:(i,v)∈E

Nk
i,v · δk ≤ Qk

i (t), ∀k.

(37)

Note that, the optimization in Eq. (37) represents a bounded
multiple knapsack problem, which is known to beNP-hard
[39]. Therefore, we design an approximation algorithm that
leverages the linear program relaxation (LP-relaxation) with
rounding, as shown inAlgorithm 1. Specifically, in each
DC, we first solve the problem in Eq. (37) by relaxing the
integer variables and then round down the solution to get
{Nk

i,v, ∀v, k}. Then, we allocate the residual bandwidthBi,v

on each link(i, v) to the remaining data in{Qk
i (t), ∀k}. This

means that we sort the combinations of{v, k} in descending
order ofBk

i,v(t) · δk, and then for each sorted{v, k}, we allo-
cate the bandwidth on link(i, v) to queueQk

i (t) accordingly.
Finally, the bandwidth allocationbki,v(t) is obtained.

4) Task Processing:To get the optimal IT resource alloca-
tion for task processing in destination DCs, we define

Ck
i (t) = (Qk

i (t) · w
2
k · δk + V · γk) · µk, ∀i, k ∈ Ki.

Then, GlobalAnyshould allocate IT resources in destination
DCs for task processing according toCk

i (t). This is because

Algorithm 1 Bandwidth Allocation ofGlobalAnyfor DC i

Input:
Q(t), {Bi,v, ∀v}.

1: calculate{Bk
i,v(t), ∀v, k} with Eq. (31);

2: get {Nk
i,v, ∀v, k} with LP-relaxation of Eq. (37);

3: Nk
i,v = ⌊Nk

i,v⌋, ∀v, k;
4: Qk

i (t) = Qk
i (t)−

∑

v

Nk
i,v · δk, ∀k;

5: Bi,v = Bi,v −
∑

k

Nk
i,v · δk, ∀v;

6: sort {v, k} in descending order ofBk
i,v(t) · δk;

7: for each{v, k} in sorted orderdo
8: if Bk

i,v(t) ≥ 0 then

9: ∆ = ⌊
max(min(Qk

i (t),Bi,v),0)
δk

⌋;
10: Nk

i,v = Nk
i,v +∆;

11: Qk
i (t) = Qk

i (t)−∆ · δk;
12: Bi,v = Bi,v −∆ · δk;
13: else
14: break;
15: end if
16: end for
17: bki,v(t) = Nk

i,v · δk, ∀v, k;

according to Eq. (26), the IT resource allocation can be
obtained by solving the optimization problem below

Maximize
∑

k∈Ki

Ck
i (t) · c

k
i (t),

s.t.
∑

k∈Ki

cki (t) ≤ Ci, ∀i.
(38)

SinceCk
i (t) ≥ 0, ∀i, k ∈ Ki is always true, we can get the

optimal cki (t)
∗ with the following procedure. Firstly, inDC i,

we sort the queues{Qk
i (t), ∀k ∈ Ki} in descending order of

Ck
i (t). Secondly, we allocate IT resources to them in sorted

order, until they all get sufficient IT resources to handle the
tasks or all the IT resources are allocated.

5) Overall Distributed Online Scheduling:Based on the
analysis above, we get the overall procedure ofGlobalAny
for scheduling data-oriented tasks at timet in DC i, which
is shown inAlgorithm 2. Specifically, for each task category,
the auxiliary variable and task acceptance are first calculated
independently with Eqs. (28) and (30), respectively. Then,
we use Algorithm 1 to get the bandwidth allocation and
forward the related tasks to adjacent DCs. Meanwhile, all the
tasks received from adjacent DCs should be accepted. Next,
GlobalAnyhandles the tasks whose destination DCs areDC i
with the scheme proposed in Section IV-B4. Finally, we update
{Qk

i (t)} and{Xk
i (t)} with Eqs. (5), (7) and (18), and share

the queue lengths of{Qk
i (t)} with adjacent DCs.

We should point out thatGlobalAnyrealizes the inter-DC
data-oriented tasks transferring and processing in a distributed
way. Basically, all the accepted tasks will be delivered with
the store-and-forward scheme inAlgorithm1, until they reach
any of their destination DCs. Then, each task’s data will be
stored and processed. Meanwhile, all the DCs should exchange
the information on queue lengths to their adjacent DCs with
Algorithm1 in each TS. Note that, the bandwidth overhead for
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Algorithm 2 Tasks Scheduling inDC i usingGlobalAny
1: for each task categoryk ∈ K do
2: calculate auxiliary variablexk

i (t) with Eq. (28);
3: accept tasks according toxk

i (t) using Eq. (30);
4: end for
5: useAlgorithm 1 to obtain the bandwidth allocation;
6: send tasks in queues to adjacent DCs with the allocated

bandwidth;
7: accept all the tasks from adjacent DCs;
8: process the tasks whose destination DC set includesDC

i with the scheme proposed in Section IV-B4;
9: update{Qk

i (t), Xk
i (t), ∀k};

10: send queue lengths of{Qk
i (t), ∀k} to adjacent DCs;

the information exchange is negligible, when compared with
the bandwidth used for the data-transfer.

C. Optimality Analysis

With the procedure demonstrated in [14, 34], we can easily
prove that the time-average profitP obtained byGlobalAny
can approach to the theoretical maximum profitP ∗ arbitrarily
within a constant gapO( 1

V
).

V. DATA -TRANSFERACCELERATION

GlobalAnycan schedule the data-oriented tasks in the cloud
DC system to achieve the profit that is arbitrarily close to the
optimal one. However, since we do not put queue lengths in the
optimization objective, the resulting data-transfer latency could
become an issue. Specifically, the store-and-forward scheme
and hop-by-hop bandwidth allocation governed byAlgorithm
1 could induce relatively long latency. For instance, in Fig. 3,
the data inDC s needs to be sent toDC d. Then, the data-
transfer will take at least 3 TS’ if the data is forwarded hop-
by-hop ons-u-v-d. Moreover, store-and-forward might cause
routing loops,i.e., data can be forwarded back and forth in a
loop before reaching its destination DC. Note that, the latency
can be reduced, if we modify the bandwidth allocation scheme
to bypass certain intermediate DC(s). Hence, we design a data-
transfer acceleration scheme for this purpose.

The basic idea of the data-transfer acceleration is that in
each TS, we make the DCs calculate bandwidth allocation
collaboratively in multiple iterations to determine a forwarding
path segment instead of the next hop for each data-oriented
task. For instance, in Fig. 3, we makeDCss, u andv calculate
the bandwidth allocation scheme in three iterations to set up
the direct-transfer paths-u-v-d. Firstly, DC s determines the
bandwidth allocation on link(s, u) and forwards the related
information toDC u. Note that here,DC s only lets DC u
know that the data will go through it, but the actual data still
stays inDC s. Then,DC u updates its queue as it has already
received the data, obtains the bandwidth allocation on link
(u, v), and sends the related information toDC v. DC v repeats
the same procedure to get the bandwidth allocation on link
(v, d). All these operations are performed within one TS, and
then we start the actual data-transfer. Note that when the data is
sent out fromDC s, each intermediate DC ons-u-v-d checks

Fig. 3. Example on data-transfer acceleration.

whether the bandwidth has already been allocated for it to the
next hop, if yes, the data is sent out directly, otherwise, itis
buffered in the intermediate DC and waits for the next TS.

Algorithm3 shows the data-transfer acceleration scheme de-
signed forGlobalAny. Lines1-2 are for the initialization. Here,
we use flagF k

i,v = 1 to indicate that the data-transfer of the
k-th task category can use link(i, v), andF k

i,v = 0 otherwise.
Hence, reverse data-transfer can be avoided to minimize the
probability of forming routing loops. Specifically, if a link is
used by the data-transfer of a task category, we forbid the data-
transfer in the reverse direction in the subsequent iterations by
setting the correspondingF k

i,v = 0. Hence, we have

0 ≤ Nk
i,v · δk ≤ Qk

i (t) · F
k
i,v, ∀i, k, ∀(i, v) ∈ E . (39)

In each iteration of the while-loop that coversLines 3-18,
DC i tries to extend the forwarding path segments to one
more hop. Here, due to the time constraint from TS on the
information exchanges among the DCs, we assume that each
DC can only extend the forwarding path segments toM hops
at most within one TS. InLines5-13,DC i tries to determine
the new bandwidth allocation on each link that origins from
it. Specifically,Line 5 calculates the bandwidth allocation by
using LP-relaxation to solve the problem of Eq. (37) with the
constraint in Eq. (39). And we also forbid the data-transfers
in the reverse direction in the subsequent iterations.Lines12-
13 update the corresponding variables. We perform message
exchanges among DCs and update other variables inLines
14-17. Although the data-transfer acceleration increasesthe
information exchanges inGlobalAny, each DC still only needs
to exchange information with its adjacent DCs. And at last, we
perform the residual bandwidth allocation for the remaining
data inLines19-29, which is similar toGlobalAnyalgorithm.
We denote the algorithm that incorporates the data-transfer
acceleration scheme asGlobalAny Ext.

VI. PERFORMANCEEVALUATION

Numerical simulations with two different topologies are
performed to evaluate our proposed algorithms. One is the
full-mesh 7-node Amazon EC2 network topology in [40]. We
adopt the same link bandwidth and scale down the link cost
with 10−5 proportionally for normalization. The other is the
12-node B4 topology in [12]. The link available bandwidth
is randomly selected within[10, 100] Gb/s, whose unit cost
is [1, 10] × 10−2 per Gb/s. The number of task categories,
i.e., |K|, is set as 100. The arrivals of the data-oriented tasks
follow the uniform distribution, and the time average arrival
rate is half of the maximum value,i.e., 1

2A
max
k . The data-size
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Algorithm 3 GlobalAnywith Data-Transfer Acceleration
Input:

Q(t), {Bi,v}, {Bk
i,v(t)}.

1: F k
i,v = 1, bki,v(t) = 0, ∀i, v, k, n = 0;

2: while n < M do
3: n = n+ 1;
4: get {Nk

i,v, ∀v, k} with LP-relaxation of Eq. (37) and
the constraint in Eq. (39);

5: Nk
i,v = ⌊Nk

i,v⌋, ∀v, k;
6: for each{v, k} do
7: if Nk

i,v > 0 then
8: F k

v,i = 0;
9: end if

10: end for
11: bki,v(t) = bki,v(t) +Nk

i,v · δk, ∀v, k;
12: Bi,v = Bi,v −

∑

k

Nk
i,v · δk, ∀v;

13: exchangeF k
i,v, F k

v,i andNk
i,v with adjacent DCs;

14: Qk
i (t) = Qk

i (t)− (
∑

v

Nk
i,v +

∑

v

Nk
v,i) · δk, ∀k;

15: exchange queue lengths ofQ(t) with adjacent DCs;
16: updateBk

i,v(t) with Eq. (31);
17: end while
18: sort {v, k} in descending order ofBk

i,v(t) · δk;
19: for each{v, k} in sorted orderdo
20: if Bk

i,v(t) ≥ 0 then

21: ∆ = ⌊max(min(Qk
i (t),Bi,v),0)
δk

⌋;
22: bki,v(t) = bki,v(t) + ∆ · δk;
23: Qk

i (t) = Qk
i (t)−∆ · δk;

24: Bi,v = Bi,v −∆ · δk;
25: else
26: break;
27: end if
28: end for

of each categoryδk is randomly selected within[1, 10] M-
bits. The source and destination DC sets of each category are
also randomly selected and do not overlap. The IT resources
in each DC are set as104, and the number ofk-th category
tasks that can be processed with a unit IT resource in one TS,
i.e., µk, is selected within[1, 10].

TABLE II
SIMULATION PARAMETERS

|K|, number of task categories 100
δk, data-size ofk-th category tasks [1, 10] M-bits
αk, revenue coefficient ofk-th task category [0.01, 0.1]
γk, revenue coefficient ofDC i [1, 2]× 10−3

ρi, cost coefficient ofDC i [1, 2]× 10−4

wk, weight ofk-th task category [0.1, 1]
Amax

k , maximum arrival-rate ofk-th category 100
Ci, the amount of IT resources inDC i 104

µk, number ofk-th category tasks that unit IT resource
can process in one TS

[1, 10]

∆t, duration of one TS 1 minute
TS’ in each simulation 10000

For the data-transfer acceleration, we determineM as the
diameter of the topology,i.e., the maximum hop-count of
the shortest paths between DC-pairs in the network. Hence,

Fig. 4. LocalAnyscenario for scheduling data-oriented tasks inDC i.

GlobalAny Ext becomesGlobalAny as M = 1 in the EC2
topology. For the B4 topology, we haveM = 5. TS is set
as 1 minute and we simulate 10,000 TS’ in each simulation.
Table II summarizes all the key simulation parameters. In
the simulations, we introduce two performance metrics,i.e.,
the time-average delay and throughput. Here, we adoptD
to denote the average delay of all the processed tasks, and
represent the time-average throughput, which is the average
amount of processed data per TS in the network, asT .

A. Benchmark Algorithms

1) LocalAny: A more straight-forward idea to schedule the
data-oriented tasks is that when a task is generated, its source
DC decides whether to serve it or not and where its destination
DC should be in one shot. As the destination DCs are selected
locally in source DCs, we name this scheduling algorithm as
LocalAny. Here, forLocalAny, Qk

i,j(t) is used to denote the
queue that stores all the tasks that belong to thek-th category
and haveDC j as the destination DC. InDC i, we useaki,j(t)
to denote the accepted tasks that haveDC j as the destination
DC, andbj,ki,v (t) to denote the allocated bandwidth on link(i, v)
for the tasks that target toDC j, respectively, whilecki (t) is the
allocated IT resources for task processing. Then, the queues
for task acceptance and transfer are updated as

Qk
i,j(t+ 1) =max



Qk
i,j(t)−

∑

{v:(i,v)∈E}

bj,ki,v (t), 0





+
∑

{v:(v,i)∈E}

bj,kv,i(t) + ak
i,j(t) · δk,

{i, j, k : i, j ∈ D, i 6= j, k /∈ Ki}.

(40)

The queues for task processing are updated as

Qk
i,i(t+ 1) =max

(

Qk
i,i(t)− cki (t) · µk, 0

)

+
∑

{v:(v,i)∈E}

bi,kv,i(t), ∀i ∈ D, k ∈ Ki.
(41)

Fig. 4 shows an example on the data-transfer withLocalAny,
where for simplicity, we only include two task categories. We
assume thatDC i is the source DC of tasks in the first category
and it is the destination DC of the tasks in the second category,
i.e., i ∈ S1 and i ∈ D2. The destination DCs of the tasks are
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determined when they are accepted. Then, the newly accepted
tasks and those from adjacent DCs will be inserted into the
corresponding queues. We allocate IT resources to the tasks
that arrive at their pre-selected destination DC,e.g., the tasks
in Q2

i,i(t) in Fig. 4. And the bandwidth allocation for other
queues is performed afterwards.

With the Lyapunov optimization techniques, we get the
optimization for the task acceptance inLocalAnyas

Minimize
∑

j

Qk
i,j(t) · a

k
i,j(t)−Xk

i (t) · δk · ak
i (t),

s.t. 0 ≤ ak
i (t) ≤ Ak

i (t), ∀i, k,
∑

j

ak
i,j(t) = ak

i (t), ∀i, k.

(42)

Here, {Xk
i (t), ∀i, k} are still the virtual queues. Supposing

that we have already got the optimal solution ofaki (t) as
aki (t)

∗, we can reduce the optimization to

Minimize
∑

j

Qk
i,j(t) · a

k
i,j(t),

s.t.
∑

j

ak
i,j(t) = ak

i (t), ∀i, k.
(43)

And aki,j(t)
∗ can be obtained as

ak
i,j(t)

∗
=

{

ak
i (t)

∗, j = argmin{Qk
i,v(t),∀v ∈ Dk},

0, otherwise,
(44)

which means that all the newly-generated requests should be
allocated to the shortest feasible queue. Then, we put the
optimal solutionaki,j(t)

∗ into Eq. (42), and get

Minimize (Qk
i,j∗(t)−Xk

i (t) · δk) · a
k
i (t),

s.t. 0 ≤ ak
i (t) ≤ Ak

i (t), ∀i, k,
(45)

wherej∗ = argmin{Qk
i,v(t), ∀v ∈ Dk} refers to the shortest

feasible queue inDC i. Finally, the optimal solutionaki (t)
∗ is

ak
i (t)

∗
=

{

Ak
i (t), Qk

i,j∗(t) ≤ Xk
i (t) · δk,

0, otherwise.
(46)

The data-transfer and task processing inLocalAny are
similar to those inGlobalAny. However, withLocalAny, the
tasks can only be processed in the pre-selected destination
DCs, rather than any feasible ones.

2) LocalAnyExt: Similar to GlobalAny Ext, we refer to
the algorithm that incorporates the data-transfer acceleration
scheme inLocalAnyas LocalAny Ext. We use it as another
benchmark algorithm in the simulations.

3) Benchmark Algorithms:Moreover, we also compare the
performance of our proposed algorithms with several existing
ones. The first one is to transfer the tasks to their destination
DCs directly, i.e., the direct-transfer (DT). Specifically, in
each TS, the source DC selects the destination DC for each
newly-generated task randomly and then network bandwidth
is allocated by calculating the multi-source multi-destination
maximum flow. If bandwidth is insufficient, the task is buffered
in its source DC until there is enough out-bound bandwidth.
The second one,i.e., TEN-SnF, adopts the store-and-forward
scheme with the time-expanded networking technique in [10],
and selects each task’s destination DC randomly.
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B. Parameter Analysis

1) Adjustable ParameterV : We first investigate the impact
of parameterV . Fig. 5 shows the time-average profitP for
GlobalAnyand LocalAny. We can see that forGlobalAny, P
increases withV faster whenV is smaller. Eventually, when
V keeps increasing,P would converge to its optimal value
smoothly, which verifies that the time-average profitP can
approach to the optimal value arbitrarily within a constant
gapO( 1

V
). We notice thatGlobalAnyachieves a higher profit

P than LocalAny. In Fig. 5, we also plot the average value
of the total time-average queue length in each DC,i.e.,
Q = 1

|D|

∑

i,k

Qk
i (t) for GlobalAnyandQ = 1

D

∑

i,j,k

Qk
i,j(t) for

LocalAny. It can be seen that for the sameV , the Q from
GlobalAnyis less than that fromLocalAny, and this advantage
becomes more obvious whenV increases.

2) Category Weightwk: As explained in Section IV,Glob-
alAny can provide differentiated services to different task
categories by adjusting their weights{wk}. To demonstrate
this feature, we multiply the weight of the first task category,
i.e., w1, with a parameterθ, and keep the remaining weights
unchanged. Here, we useD1 to denote the average task
processing delay of the first category, while the average delay
of other categories are denoted asD−1. T1 andT−1 are used to
denote the throughput of the first category and other categories,
respectively. Fig. 6 shows the results on task processing delay
and throughput for differentθ, which indicate thatD1 decreas-
es withθ, andT1 increases withθ. This is because more tasks
in the first category can be accepted with a largerw1, and
since we would allocate more bandwidth and IT resources to
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this task category, the task processing latency becomes shorter.
Meanwhile,D−1 andT−1 stay almost unchanged for different
θ. Hence, we verify that the performance of a task category
can be adjusted adaptively.

C. Bandwidth Allocation Policies

We then simulateGlobalAnywith different bandwidth al-
location and data-transfer polices. Here, we denote the al-
gorithm that solves the integer linear programming (ILP)
model in Eq. (37) for bandwidth allocation and data-transfer
as GlobalAny ILP1. According to the discussion in Section
IV-B3, we can design a simple data-transfer policy that lets
the queue transfer data to the adjacent DCs randomly, if it
has the maximum positiveBk

i,v(t) on multiple links. The
algorithm with this policy is denoted asGlobalAny HEU.
We setV = 3 × 104 and perform simulations with different
maximum arrival rateAmax

k . Fig. 7 shows the results onP
andD, which indicate thatP increases withAmax for all the
policies. Note that, compared withGlobalAny ILP, GlobalAny
provides similar results onP andD, while the performance
of GlobalAny HEU on them is much worse. Meanwhile, the
average computation time to get the bandwidth allocation
scheme for a DC in a TS is32.7 msec,19.1 msec and125.3
msec, withGlobalAny, GlobalAny HEU andGlobalAny ILP,
respectively. Therefore,GlobalAnycan achieve the similar task
scheduling performance asGlobalAny ILP, with much shorter
computation time. Even thoughGlobalAny HEU consumes

1CPLEX is used to solve the ILP, and all the simulations in thispaper run
on a computer with an Intel CPU (I3-2120, 3.30GHz) and 8 GB memory.

the shortest computation time, its performance is significantly
worse thanGlobalAnyand GlobalAny ILP. To this end, we
can see thatGlobalAny can obtain near-optimal scheduling
performance with reasonably short computation time.

D. Comparison with Benchmark Algorithms

Next, the simulations use different maximum arrival rate
Amax

k to emulate the change of traffic loads. AndV is chosen
to balance the profit and delay as much as possible forGlobal-
AnyandLocalAny. Fig. 8 shows the results on the time-average
profit and average delay from different algorithms. Apparently,
GlobalAnyachieves the highest profitP among the algorithms,
especially when the traffic load is relatively high. The average
task processing delayD from GlobalAny is shorter than that
from LocalAny, while it is longer than those fromDT and
TEN-SnF. Actually, the results on average task processing
delay from GlobalAny and TEN-SnF are comparable, but
DT provides fixed and the shortest task processing latency.
However, asDT drops the requests when the system can not
transfer or process them directly and its profit is less than that
of GlobalAnysignificantly.

Table III shows the results on the average throughputT and
computation time. We can see thatT increases withAmax

k

andGlobalAnyprovides the highestT among the algorithms.
As for the computation time,GlobalAny is at least one-
magnitude faster thanDT and TEN-SnF, which verifies that
GlobalAny can successfully address the scalability issue of
DT andTEN-SnFand operate in an online manner. Moreover,
the computation time ofGlobalAnykeeps steady whenAmax

k

increases, while that ofTEN-SnFincreases withAmax
k . This is

becauseTEN-SnFinvokes more frequent network-expanding
operations whenAmax

k is larger, which is time-consuming.

TABLE III
PERFORMANCECOMPARISONS USINGEC2 TOPOLOGY

Average Throughput Computation Time

(×105) (msec)

Amax
k 300 600 900 300 600 900

GlobalAny 1.46 2.32 2.76 29.5 31.2 30.6

LocalAny 1.27 2.14 2.65 57.2 58.4 59.6

DT 1.40 2.11 2.58 357.6 344.0 327.8

TEN-SnF 1.43 2.17 2.63 734.4 1432.8 1925.0

E. Simulations with B4 Topology

Finally, we perform simulations with the B4 topology to
evaluate the proposed algorithms further. We setAmax

k = 100
and changeV to investigate the impacts of parameterV . Fig. 9
shows the time-average profitP and average total queue length
Q from GlobalAny, GlobalAny ILP, andGlobalAny Ext. We
observe that bothP andQ increase withV and then converge
to fixed values, which show similar trends as those obtained
with the EC2 topology. And the performance ofGlobalAnyon
P andQ is close to that ofGlobalAny ILP. It is interesting
to see that the profit fromGlobalAny Ext is higher than that
from GlobalAnyand theQ from GlobalAny Ext is less than
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Fig. 10. Time-average profits in B4 topology.

that from GlobalAny. The results verify the effectiveness of
the data-transfer acceleration scheme.

We also simulate the algorithms with differentAmax
k . Figs.

10 and 11 show the results on the time-average profitP and
average task processing delayD, respectively. It can be seen
clearly that the algorithms with the data-transfer acceleration
scheme always provide higher profit and shorter delay, when
compared with their counterparts without the scheme, espe-
cially for GlobalAny Ext. Table IV shows the results on the
average throughputT and computation time. We observe that
GlobalAnyandGlobalAny Ext achieve higher throughput than
the other algorithms. When comparing it withGlobalAny, we
find thatGlobalAny Ext achieves much higher throughput with
just slightly longer computation time. Note that, althoughthe
running time does become longer forGlobalAny Ext, it is still
acceptable for realizing online operations.

VII. C ONCLUSIONS

This paper investigated the distributed online scheduling
for data-oriented tasks in cloud DC systems. By considering
the store-and-forward and anycast schemes, we formulated
an optimization problem to maximize the time-average profit
and then leveraged the Lyapunov optimization techniques to
propose an efficient scheduling algorithm,i.e., GlobalAny. We
also designed a data-transfer acceleration scheme to reduce
the data-transfer latency. Numerical simulations verifiedthat
our algorithms can maximize the time-average profit in a
distributed online manner. The results also indicated that
GlobalAny and GlobalAny Ext (i.e., GlobalAny with data-
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Fig. 11. Time-average task processing delay in B4 topology.

transfer acceleration) outperformed several existing algorithms
in terms of both time-average profit and computation time.

TABLE IV
PERFORMANCECOMPARISONS USINGB4 TOPOLOGY

Average Throughput Computation Time

(×106) (msec)

Amax
k 300 600 900 300 600 900

GlobalAny 0.61 1.01 1.13 53.1 56.4 57.1

LocalAny 0.47 0.73 0.89 98.2 98.7 99.6

GlobalAny Ext 0.65 1.15 1.43 254.4 261.2 263.8

LocalAny Ext 0.54 0.89 1.09 435.1 457.7 431.6

DT 0.68 1.07 1.19 1962.3 1962.5 1960.5

TEN-SnF 0.73 1.25 1.36 2055.1 3885.1 8847.1
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