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Abstract—In elastic optical networks (EONs), two lightpaths
sharing common fiber links might have to be isolated in the
spectrum domain with a proper guard-band to prevent crosstalk
and/or reduce physical-layer security threats. Meanwhile, the
actual requirements on guard-band sizes can vary for different
lightpath pairs because of various reasons. Therefore, in this
work, we consider the situation in which the actual guard-
band requirements for different lightpath pairs are differ ent,
and formulate the distance spectrum assignment (DSA) problem
to investigate how to assign the spectrum resources efficiently in
such a situation. We first define the DSA problem formally and
prove its NP-hardness and inapproximability. Then, we analyze
and provide the upper and lower bounds for the optimal solution
of DSA, and prove that they are tight. In order to solve the DSA
problem time-efficiently, we develop a two-phase algorithm. In
its first phase, we obtain an initial solution and then the second
phase improves the quality of the initial solution with random
optimization. We prove that the proposed two-phase algorithm
can get the optimal solution in bipartite DSA conflict graphs
and can ensure an approximate ratio ofO(log(|V |)) in complete
DSA conflict graphs, where|V | is the number of vertices in the
conflict graph, i.e., the number of lightpaths to be considered.
Numerical results demonstrate our proposed algorithm can find
near-optimal solutions for DSA in various conflict graphs.

Index Terms—Elastic Optical Networks (EONs), Distance
Spectrum Assignment (DSA), Physical-Layer Security.

I. I NTRODUCTION

RECENTLY, with the rapid growth of traffic demands in
backbone networks, how to utilize the spectral resources

in optical fibers efficiently and intelligently has become a key
challenge for all-optical networks. To address this challenge,
flexible-grid elastic optical networks (EONs) have been pro-
posed to enhance the agility of bandwidth allocation in the op-
tical layer [1, 2]. Specifically, in EONs, the bandwidth-variable
transponders (BV-Ts) and wavelength-selective switches (BV-
WSS’) establish lightpaths with several narrow-band (i.e.,
12.5 GHz) and spectrally-contiguous frequency slots (FS) and
realize data transmissions over them [3]. Therefore, EONs can
offer just-enough bandwidth to traffic demands from upper-
layer networks, with the fine bandwidth allocation granularity
of an FS [4, 5]. For instance, in Fig. 1, there are three lightpath
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requests in an EON,i.e., R1, R2 andR3, and their bandwidth
requirements are 2, 4 and 3 FS, respectively. The spectrum
assignments of these lightpaths are illustrated at the bottom of
Fig. 1 with blocks in different colors.

Fig. 1. Spectrum assignments with guard-bands in EONs.

Note that, in order to minimize the potential physical-
layer security threat due to inter-channel crosstalk [6], the
spectrum assignments of two lightpaths should be separated
by a sufficient guard-band when their routing paths share one
or more fiber links [7, 8]. These guard-bands, as shown in
Fig. 1, can have different sizes, which are not trivial since
they determine the impact of inter-channel crosstalk between
the lightpaths. In general, the stronger the crosstalk level
is or the higher the security requirement is, a larger sized
guard-band should be applied. Since the crosstalk level canbe
affected by many factors such as the required bandwidth, the
number of common fiber links and the lightpaths’ modulation-
levels [9] while the security requirement would depend on the
defense of various physical-layer attacks,e.g., eavesdropping
and jamming attacks [10], the actual guard-band require-
ments in EONs would change for different lightpath pairs.
Nevertheless, the guard-bands’ sizes and the way in which
we deploy them would generate spectrum fragmentation and
hence significantly influence the spectrum utilization in EONs
[11, 12].

Therefore, the service provisioning scheme that uses guard-
bands with constant sizes [13] might not be suitable to handle
the situation in which the crosstalk levels and/or the security
requirements of lightpath pairs are diverse. For instance,a
fix-sized guard-band might be insufficient to mitigate a strong
crosstalk level while result in spectrum waste for satisfying
a relatively low security requirement. Hence, it would be
relevant to study how to realize spectrum assignments with
various guard-band sizes efficiently.
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In this paper, we put forward a new spectrum assignment
model, which uses guard-bands with different sizes to adaptto
the crosstalk level or the security requirement of each lightpath
pair in an EON. Our model is named as distance spectrum
assignment (DSA). We consider the network planning problem
in which all the lightpath requests and their routing paths
are known, the spectral resources in the EON are sufficient
to serve all the requests, and the mutual crosstalk levels or
security requirements of the lightpath pairs are also known.
With all the aforementioned information, DSA tries to achieve
efficient spectrum assignment that can not only use guard-
bands with various sizes to adapt to the mutual crosstalk
levels or security requirements of the lightpaths, but also
minimize the maximum FS index used in the EON. Note
that, to the best of our knowledge, the problem described
by DSA has never been studied theoretically in the literature.
Moreover, as we will explain in the paper, it is an extremely
challenging problem. Hence, we explore the characteristics of
the DSA problem and provide some interesting and insightful
theoretical results to support future studies in this direction.
The contributions of this work can be summarized as follows.

• To the best of our knowledge, this is the first work to
formally study the DSA problem. We prove theNP-
hardness of the problem and analyze its inapproxima-
bility, and also formulate an integer linear programming
(ILP) model to solve it exactly.

• We formally provide the upper and lower bounds of the
optimal solution of DSA and prove that they are tight.

• We propose a two-phase algorithm to solve the DSA
problem time-efficiently, and study its performance in
various DSA situations, which are represented by dif-
ferent conflict graphs. Specifically, in a conflict graph,
each vertex represents a lightpath while an edge signifies
the guard-band requirement between two lightpaths. In
its first phase, the algorithm generates an initial solution,
which is proven to be the optimal solution in bipartite
conflict graphs and can guarantee an approximate ratio
of O(log |V |) in complete conflict graphs. The second
phase improves the initial solution with a random opti-
mization procedure, whose convergence performance are
also analyzed mathematically.

The rest of this paper is organized as follows. Section II
presents our motivation and the related work. In Section III,
we model the DSA problem and analyze its hardness. The
upper and lower bounds of the optimal solution of DSA are
analyzed in Section IV. In Section V, we transform DSA
into a permutation-based optimization problem (POP), and
with this transformation, the two-phase algorithm is developed
in Section VI. The performance of the two-phase algorithm
is theoretically analyzed in Section VII, and the numerical
results for performance evaluation are presented in Section
VIII. Finally, Section IX summarizes the paper.

II. M OTIVATION AND RELATED WORK

With the recent advances in optical devices and transmission
techniques, the concept of EON has been proposed to make
the resource management in the optical layer more flexible

and hence attracted intensive research interests [1–4, 7, 11–
15]. The authors of [1] systematically discussed the enabling
technologies and building blocks of EONs,e.g., bandwidth-
variable wavelength cross-connects (BV-WXCs), and laid out
the network architecture of EON, which enables flexible band-
width allocation with a fine granularity to provide just-enough
bandwidth to customer traffic demands. Hence, compared with
the traditional fixed-grid wavelength-division multiplexing net-
works, EON can significantly improve the utilization efficiency
of spectrum resources. Note that, since the channel spacingin
EONs becomes much narrower than that in WDM networks,
the usage of guard-bands,i.e., the unused FS in between the
spectrum assignments of two spectrally adjacent lightpaths,
becomes more tricky. Specifically, if the guard-bands are not
properly chosen, the physical impairments in fibers would
induce crosstalk between the lightpaths and thus their quality-
of-transmission (QoT) would be deteriorated. Moreover, the
crosstalk between two spectrally adjacent lightpaths can be
easily utilized to realize physical-layer attacks such as eaves-
dropping and power jamming [6, 7, 10, 16], and mixed
modulation attacks can also degrade the quality of high-bit-
rate phase-modulated lightpaths with cross-phase modulation
[17]. Therefore, we have to carefully choose the guard-bands
to reduce the risk of physical-layer attacks, the degradation of
QoT and the nonlinear penalty in EONs [6, 10, 17].

In order to realize spectrally efficient lightpath provision-
ing, the routing and spectrum assignment (RSA) problem
has already been intensively studied. In [4], RSA has been
formally defined along with the discussion on its complexity,
and an ILP model and two time-efficient heuristics have been
designed to solve the RSA problem. The authors of [13, 18]
have considered to provision multicast requests in EONs with
the multicast-capable routing, modulation-level, and spectrum
assignment (RMSA). Moreover, the RSA/RMSA algorithms
for more sophisticated service provisioning schemes, suchas
advance reservation [19], spectrum defragmentation [20],and
virtual network embedding [21], have also been investigated
before. However, most of the previous studies on RSA as-
sumed that the guard-bands use a constant size for all the
lightpath pairs. Note that, the work in [9] had already revealed
that the filtering characteristics of optical components can
make the selection of guard-band sizes extremely sophisticat-
ed. Therefore, using a fixed guard-band size does not coincide
with the practice and thus the problem of DSA,i.e., the
spectrum assignment with various guard-band sizes should be
investigated in a timely manner.

In general, the wavelength assignment (WA) problem in
WDM networks (each request in WA problem is assigned with
a fixed-wavelength frequency) and the spectrum assignment
(SA) problem in EONs (each request in SA problem is
assigned with a number of FS, the details of distinction
between the WA and SA are shown in Table I) can both
be studied by leveraging the graph coloring method [22] in
conflict graphs that are constructed based on the routing results
of lightpaths. Specifically, WA can be solved by finding the
chromatic number of the conflict graph [23, 24] while SA
can be solved with the interval chromatic number [4, 25].
Nevertheless, DSA differs from the classical graph coloring
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TABLE I
COMPARISON OF RELATED COLORING PROBLEMS

Classical
Coloring [22]

(e.g., WA [23])

Fractional
Coloring

[26]

Traditional
SA [4]

DSA
(this

work)
Vertex
Color

One color A set of
colors

A set of
colors

A set of
colors

Color
Contiguity

N/A No need Required Required

Color
Distance of
Adjacent
Vertices

Disjoint Disjoint Identical
positive
integer

Various
positive
integers

problem [22] in two aspects: 1) each vertex in the conflict
graph, which represents a lightpath, is assigned with a set
of contiguous colors (i.e., FS) according to the bandwidth
demand rather than only one color; and 2) the distance of
the color sets of two adjacent vertices is no longer one but
a positive integer, representing the guard-band requirement,
which is not identical for all the vertex pairs. More specifically,
DSA is similar to the fractional coloring problem [26], with
two differences: 1) contiguous colors should be assigned to
each vertex in DSA, while this is not the case for fractional
coloring; and 2) various distances between adjacent color sets
should be kept in DSA while color sets only need to be disjoint
in the latter one. For clarity, Table I provides the comparison
of the four coloring related problems that have been discussed
above,i.e., the classical coloring, the fractional coloring, the
traditional SA, and the DSA problem. We can see that DSA is
apparently a new combinatorial optimization problem, which
has not yet been studied before. In the next section, we will
formally define the DSA problem.

III. D ISTANCE SPECTRUMASSIGNMENT (DSA) PROBLEM

In an EON, a set of FS is available in each optical
fiber to carry lightpaths. Hence, efficient spectrum assignment
algorithms are needed to optimize the spectrum usages of
lightpaths under the spectrum contiguous and non-overlapping
constraints [2]. Meanwhile, in DSA, to address the crosstalk
level and/or security requirement of each lightpath pair, we
need to choose a proper guard-band to insert.

A. Problem Description

For DSA, we consider the network planning problem in
which all the lightpath requests and their routing paths are
known, the spectral resources in the EON are sufficient to
serve all the requests, and the mutual crosstalk levels or
security requirements of the lightpath pairs are also known
(i.e., the required guard-band sizes are given for all the
spectrally adjacent lightpath pairs). Then, DSA tries to achieve
efficient spectrum assignment that can not only accommodate
all the lightpath requests to satisfy all the constraints, but also
minimize the maximum used FS index (MUFI) in the EON.

To solve DSA, we construct a conflict graph based on
the known information regarding the lightpaths. Specifically,
we first use a vertex to represent each lightpath and assign
a weight to it for its bandwidth demand in FS, and then
we connect two vertices with an edge if there would be

crosstalk between their lightpaths or a guard-band has to be
inserted in between the lightpaths’ spectrum assignments due
to certain customer-specified security reasons. Note that,a
weight is also assigned to each edge in the conflict graph to
represent the actual required guard-band size. Figs. 2 and 3and
Table II show an illustrative example on how to construct the
conflict graph. There are four lightpaths with the information
in Table II and their routing paths in a 4-node ring topology
is illustrated in Fig. 2. Then, we assume that the guard-band
requirements for the lightpaths are shown in Fig. 3(a), where
for simplicity, we use the number of common links in two
lightpaths’ routing paths as their guard-band requirement. Note
that, previous experimental investigation has suggested that
the crosstalk level between two spectrally adjacent lightpaths
is positively correlated with the number of common links in
their routing paths [9]. For instance, since the routing path
of R1, i.e., B-A-D, shares two common links with that ofR4

(C-B-A-D), the required guard-band size between them would
be at least 2 FS. In the conflict graph in Fig. 3(a), the number
inside a cycle is the bandwidth demand in FS while the number
on an edge indicates the required guard-band size. Based on
the conflict graph in Fig. 3(a), we can figure out that optimal
solution of DSA is that in Fig. 3(b), where the assigned FS to
each lightpath are marked with red braces.

TABLE II
INFORMATION ON L IGHTPATHS

Bandwidth Demand Route
RequestR1 3 FS B-A-D
RequestR2 2 FS C-B-A
RequestR3 3 FS A-D-C-B
RequestR4 1 FS C-B-A-D

Fig. 2. Lightpaths in Table II in a 4-node ring topology.

B. DSA model and Integer Linear Program

Note that, since we only consider the spectrum assignment
problem in DSA, which is already a relatively complex prob-
lem as we will explain below, we assume that the routing and
guard-band information on the lightpaths are known and thus
for each instance of DSA, the conflict graph has already been
constructed. Therefore, from now on, we concentrate on how
to obtain the optimal spectrum assignments for the lightpaths
(i.e., the optimal solution of DSA) based on a known conflict
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(a) Conflict graph (b) Optimal solution

Fig. 3. Conflict graph for lightpaths in Fig. 2 and optimal DSAsolution.

graph, and consider various types of conflict graphs in our
analysis. We first introduce the following notations for DSA.

Necessary Notations:
• G(V,E): The DSA conflict graph, whereV is the set of

vertices, andE is the set of the conflict edges.
• N+: The set of natural numbers for representing the FS

indices in the spectrum domain, which starts from 1.
• vi: vi ∈ V represents thei-th lightpath request.
• vwi : The integer weight signifies bandwidth demand of

lightpathvi, in the number of contiguous FS.
• wvi : The set of contiguous FS assigned tovi.
• vbi : v

b
i ∈ N+ is the start-index ofwvi .

• vai : vai ∈ N+ is the end-index ofwvi .
• e or vivj : The edgee ∈ E connectingvi andvj , which

represents that the lightpaths ofvi andvj share common
link(s). For convenience, we also usevivj to represent an
edgee.

• de (dvivj ): The positive integer weight that represents the
least guard-band size between lightpathsvi andvj .

• B: B ∈ N+ is a reasonably large integer.

For ease of discussion, we also useG(V,E, {vwi }, {dvivj}) to
represent a DSA graph,i.e., making the weights of vertices
and edges explicit. Our objective is to minimize the MUFI in
the EON. Note that, it is also possible that the conflict graph
G is not a fully connected one. In that case, we can partitionG
in to a few connected components, solve the DSA problem in
them, and then get the MUFI in all the components as the final
solution. Hence, we will ignore the cases of non-connected
conflict graph in our discussions. The DSA problem can then
be defined as

Minimize max
s∈

(

∪
vi∈V

wvi

)

(s) (DSA), (1)

wheres ∈ N+ is the index of a used FS. Meanwhile, DSA
should be subject to the following constraints:

• Bandwidth Requirement Constraint: Each lightpath
should be assigned with enough FS to satisfy its band-
width demand. In other words, the cardinality of FS set
assigned to a vertexvi ∈ V should be equal to its weight:

|wvi | = vwi , ∀vi ∈ V, (2)

• Spectrum Continuity Constraint: The FS assigned to
a lightpath should be the same on each fiber link in its

routing path. Basically, since each lightpath is pre-routed
and represented by a vertex in the conflict graph, this
constraint will always be satisfied automatically.

• Spectrum Contiguity Constraint: The FS assigned to
a vertex should be contiguous inN+, i.e., wvi can be
expressed as{vbi , v

b
i + 1, ..., vai − 1, vai }, wherevbi , v

a
i ∈

N+.
• Spectrum Set Distance Constraint:To satisfy the guard-

band requirements, the distance between the FS sets
assigned to two spectrally adjacent lightpaths should be
large enough. Specifically, for each edgevivj ∈ E, the
distance betweenwvi and wvj in N+ should not be
smaller than the edge’s weight:

distance(wvi , wvj ) ≥ dvivj , ∀vivj ∈ E, (3)

where,

distance(wvi , wvj ) = min
s ∈ wvi

t ∈ wvj

(|s− t| − 1).

The DSA problem isNP-hard, which will be proven
formally in the next subsection. To solve DSA exactly, we
formulate an ILP model to obtain the optimal spectrum as-
signment scheme.

Decision Variables:
• xbi : Integer variable to represent the value ofvbi .
• xai : Integer variable to represent the value ofvai .
• y: Integer variable to represent the upper bound ofxai .
• ovivj : Boolean variable for each edgevivj to represent

the order ofxbi andxbj , i.e., if xbi > xbj , we haveovivj = 1,
andovivj = 0 otherwise.

Objective Function:

Minimize y (ILP-DSA),

s.t. Eqs. (5)-(10).
(4)

xai − x
b
i + 1 = vwi , ∀vi ∈ V (5)

ovivj + ovjvi = 1, ∀vivj ∈ E (6)

xai − x
b
j + dvivj + 1 ≤ B × ovivj , ∀vivj ∈ E (7)

y ≥ xai , ∀vi ∈ V (8)

xai ∈ N+, xbi ∈ N+, ∀vi ∈ V (9)

ovivj ∈ {0, 1} ∀vivj ∈ E (10)

C. Hardness and Inapproximability Analysis

To analyze the hardness of the DSA problem, we introduce
the Minimum Hamilton Path problem (MHP) [27], whose
objective is to find a minimum Hamilton path in a weighted
complete graph. MHP is stronglyNP-hard [27].

If the conflict graph of a DSA instance is complete, which
means every two verticesvi and vj are directly connected.
Hence, the FS sets assigned to the lightpaths should be
pairwise disjoint. If the complete graph satisfies the triangle
inequality,i.e., dvivk + dvkvj ≥ dvivj , ∀vi, vj , vk ∈ V , owing
to this inequality, any Hamilton path satisfies the spectrumset
distance constraint of DSA. Therefore, in this case, the DSA
problem is equivalent to the MHP problem. If the triangle
inequality cannot be satisfied in the complete graph, then the
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solution of DSA might be longer than a Hamilton path. This
is because the spectrum set distance constraint might not be
satisfied by a Hamilton path. Precisely speaking, the distance
between two verticesvi, vj ∈ V in a Hamilton path may be
smaller than the required spectrum distancedvivj . Theorem 1
indicates the hardness of DSA.

Theorem 1:MHP ≤PT
1 DSA

Proof: To prove theNP-hardness of DSA, we just need
to prove: 1) any instanceI of MHP can be polynomial-time
reduced to an instanceI ′ of DSA, and 2) the solution ofI ′

can be converted to that ofI in polynomial time.
We get I ′ from I by giving the biggest edge weightb

to each vertex ofI as its weight and keeping the edges’
weights unchanged. Then, we havedvivk + b+ dvkvj ≥ dvivj ,
∀vi, vj , vk. With this reduction, each vertex pair in a Hamilton
path inI ′ should satisfy the spectrum set distance constraint.
Hence, the solution ofI equals that ofI ′ minus|V | ·b, where
|V | is the number of vertices. For example, in Fig. 4, if we
set the weights of the four vertices (i.e., v1, v2, v3 and v4)
to 3, which is the biggest edge weight, the MHP instanceI
becomes a DSA instanceI ′. The minimum Hamilton path
can be obtained by solving the DSA instance, which is shown
in Fig. 4 with red color. The total weight of the minimum
Hamilton path is 5, which is obtained by subtracting 12 from
the solution ofI ′. Therefore, we prove that the DSA problem

Fig. 4. Example on reducing MHP to DSA in polynomial time.

is alsoNP-hard.
To analyze the inapproximability of DSA, we first introduce

the inapproximability result on the chromatic numberχ(G)
2 of a graphG(V,E). Given a polynomial-time algorithm
A to compute the chromatic number of a graphG, we use
A(G) to denote the chromatic number obtained byA. The
inapproximability ofχ(G) is given by the following statement:

UnlessNP ⊂ ZPP, no polynomial-time algorithmA that

computes the chromatic number ofG can guarantee
A(G)

χ(G)
within O(|V |1−ǫ) for an arbitrary graphG, where|V | is the
number of vertices inG andǫ > 0 [28].

1≤P
T

means a polynomial-time Turing reduction.
2The chromatic number is the minimum number of colors needed to color

G such that adjacent vertices do not share the same color [22].

Then, we have Theorem 2.
Theorem 2:Unless NP ⊂ ZPP, no polynomial-time

heuristic algorithmAPX for DSA can guarantee
APX(I)

OPT (I)
within O(|V |1−ǫ) for all the instancesI of DSA, where
APX(I) denotes the MUFI obtained byAPX , OPT (I)
denotes the optimal result,|V | is the number of vertices in
I andǫ > 0.

Proof: For an arbitrary graphG(V,E), we can reduceG
to a DSA instanceI in polynomial time by setting the weights
of all the vertices and edges as one. Here, we denote this re-
duction asR, i.e., R(G) = I. According to Theorem 4, which
will be given in the next section,OPT (R(G)) < 2χ(G).

Therefore, if we assume thatAPX can ensure
APX(I)

OPT (I)
<

O(|V |1−ǫ) for an arbitrary DSA instanceI,
APX(R(G))

OPT (R(G))
<

O(|V |1−ǫ) would be valid for an arbitrary graphG. Hence,
APX(R(G))

2χ(G)
<
APX(R(G))

OPT (R(G))
< O(|V |1−ǫ) would be valid

for an arbitrary graphG, which means thatAPX(R(G)) can
guarantee a ratio withinO(|V |1−ǫ) for χ(G). This, however,
contradicts with the inapproximability ofχ(G). Thus, we get
the proof.

IV. U PPER ANDLOWER BOUNDS OFDSA’S OPTIMAL

SOLUTION

In this section, we analyze the upper and lower bounds
of DSA’s optimal solution. For ease of discussion, we first
introduce some terminologies and definitions.

• C(G): The condensation graph of a DSA conflict graph
G(V,E, {vwi }, {dvivj}). For the conflict graph, the vertex
setV can be partitioned intoχ(G) independent sets. We
merge the vertices in the same set as a single super-
vertex and assign the maximum weight of the vertices
in the set as the weight of the super-vertex. Then, each
super-vertex pair in the new graph might have multiple
edges. Among these edges, we only keep the one with the
biggest weight and remove the others. Finally, we obtain
the condensation graph ofG.

• VC(G): Set of the vertices inC(G) and |VC(G)| = χ(C).
• EC(G): Set of the edges inC(G).
• v′i andv′wi : v′i ∈ VC(G) is the vertex with thei-th biggest

weight andv′wi is its weight.
• wv′

i
, v′bi andv′ai : Their definitions are similar as those of

wvi , v
b
i andvai .

• e′i andde′
i
: e′i ∈ EC(G) is the edge with thei-th biggest

weight andde′
i

is its weight.
• Maximal clique ψ and Maximal clique setΨ: Given

a graphG(V,E), we call a subgraphψ(Vψ , Eψ) ⊆
G(V,E) a clique whenψ(Vψ , Eψ) is a complete graph.
A clique ψ(Vψ , Eψ) is a maximal clique if and only if
there is no cliqueψ′ ⊆ G andψ ( ψ′. We useΨ(G) to
denote the set of maximal cliques inG. In the example
in Fig. 5, there are three maximal cliquesψ1, ψ2 andψ3,
and thusΨ(G) = {ψ1, ψ2, ψ3} as indicated in the figure.

To study the feature of DSA’s optimal solution, we start
with the bipartite graphs whose chromatic numberχ(G) is 2.
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Fig. 5. Maximal cliqueψ and maximal clique setΨ(G).

Then, we continue to investigate the connection between the
optimal solution andχ(G) of a DSA conflict graph. Firstly,
we give an obvious fact, which is needed in later proofs.

Fact 1: Given a DSA conflict graphG(V,E), if there is a
solution whose MUFI equalsmax

vivj∈E
(dvivj + vwi + vwj ), then

it is an optimal one.
Proof: Due to the spectrum set distance constraint, the

MUFI cannot be less thandvivj + vwi + vwj for any vivj ∈ E.
Hence, if a solution reaches this lower bound, it is optimal.

We useopt(G) to represent an optimal solution of a DSA
conflict graphG, and |opt(G)| to denote the numerical value
of the optimal solution,i.e., the optimal MUFI. A proper
spectrum assignmentmeans that we assign FS sets to the
vertices under the four constraints of the DSA problem.

Fig. 6. Bipartite DSA graphG(V, E), V = (V1, V2).

Theorem 3:If a DSA conflict graphG(V,E) is a bipartite
graph (as shown in Fig. 6), whereV = (V1, V2) with vi ∈ V1,
1 ≤ i ≤ |V1| anduj ∈ V2, 1 ≤ j ≤ |V2|, we have|opt(G)| =
max
viuj∈E

{dviuj + vwi + uwj }.

Proof: Based on Fact 1, we just need to find a proper
spectrum assignment for all the vertices inG(V,E) whose
MUFI equalsdviuj + vwi +uwj for certain edgeviuj ∈ E. For
eachvi ∈ V1, we assign the FS setwvi with vbi = 1, vai = vwi .
For vertexuj ∈ V2, we assign the FS setwuj with ubj =
max
viuj∈E

{vai +dviuj+1} anduaj = ubj+u
w
j −1. Because vertices

in the same side of the bipartite graph are not adjacent, we can
simply verify that the aforementioned spectrum assignment
is proper. Hence, we can see that the final MUFI equals
max
viuj∈E

{dviuj + vwi + uwj }. Hence, we finish the proof.

Corollary 1: If a DSA conflict graphG(V,E) is of such
topological structure as tree, even ring or grid, we have
|opt(G)| = max

vivj∈E
{dvivj + vwi + vwj }.

Proof: Since tree, even ring and grid are bipartite graphs,
the proof is trivial based on Theorem 3.

Based on the analysis above, we can see that the optimal
solution for a DSA conflict graphG with χ(G) = 2 can be
obtained easily. Next, the question is how about the conflict
graph withχ(G) ≥ 3. Apparently, the analysis becomes more
difficult for a larger chromatic number. But fortunately, we
can get the upper and lower bounds for|opt(G)| by lever-
agingχ(G) and the maximal cliqueψ. We use MHP(ψ) to
represent a minimum Hamilton path in a cliqueψ, |MHP(ψ)|
to represent its length, andψw to denote the total weight of
the vertices inψ, i.e., ψw =

∑
vi∈Vψ

vwi .

Theorem 4:Given an arbitrary conflict graphG, the in-
equality in Eq. (11) holds for the optimal solution of the DSA
problem.

max
ψ∈Ψ(G)

{|MHP(ψ)| + ψw} ≤ |opt(G)| ≤

χ(G)−1
∑

i=1

de′
i
+

χ(G)
∑

i=1

v′wi . (11)

Proof: Firstly, we prove |opt(G)| ≤
∑χ(G)−1

i=1 de′
i
+∑χ(G)

i=1 v′wi . To achieve this inequality, we just need to find
proper spectrum assignments for all the vertices inG(V,E)

and the MUFI would not be bigger than
χ(G)−1∑
i=1

de′
i
+
χ(G)∑
i=1

v′wi .

Hence, we can first treatC(G) as a conflict graph and find a
proper spectrum assignmentP ∗ for C(G). Since each super-
vertex v′i ∈ VC(G) represents an independent set ofG (i.e.,
its weight is the maximum weight of the vertices in the
independent set ofG and edgev′iv

′
j ∈ EC(G) is the largest-

weighted edge between the independent sets represented by
v′i and v′j), we can utilizeP ∗ to find a proper spectrum
assignment forG by packing the vertices inv′i into the FS
set wv′

i
(as shown in the example in Fig. 7). Therefore, if

the MUFI of P ∗ does not exceed
χ(G)−1∑
i=1

de′
i
+
χ(G)∑
i=1

v′wi , we

prove the inequality. Here, the solutionP ∗ can be obtained
with Algorithm 1.

In Algorithm 1, we start from an arbitrary vertex inC(G),
e.g., v′i1 , and get the FS setwv′

i1
by settingv

′b
i1
= 1, v

′a
i1

= v
′w
i1

.
We select the largest-weighted incident edge ofv′i1 , e.g., e′′1 =
v′i1v

′
i2

, and the corresponding adjacent vertexv′i2 is chosen
as the next vertex. Then, we assignwv′

i2
by settingv

′b
i2

=

v
′a
i1

+ de′′
1
+ 1, v

′a
i2

= v
′b
i2

+ v
′w
i2
− 1. After that, we select

the largest-weighted incident edge ofv′i2 to a vertex whose
FS set has not been assigned. The same procedure is repeated
until all the vertices inC(G) are assigned with FS sets, and
it terminates inχ(G)− 1 steps.

The assignmentP ∗ satisfies all the constraints in DSA,
since we select the largest-weighted incident edge in each step.
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Algorithm 1: Process GetP ∗

Input : C(G)
Output : A proper spectrum assignmentP ∗ for C(G)

1 P ∗ ← ∅;
2 V ′

C ← Random Selectv′i1 ; % Let v′i1 be Current Vertex
3 V ′w

C ← v′wi1 ;
4 V ′b

C ← 1;
5 V ′a

C ← V ′w
C ;

6 P ∗ ← P ∗ ∪ [V ′b
C , V

′a
C ];

7 mark V ′
C visited;

8 while C(G) still has unvisited verticesdo
9 search the vertexv′ which is the farthest neighbour

of V ′
C among the unvisited vertices inC(G);

10 set e′′ as the edge linkingv′ andV ′
C ;

11 V ′
N ← v′; % Let v′ be Next Vertex

12 V ′w
N ← v′w;

13 V ′b
N ← V ′a

C + de′′ + 1;
14 V ′a

N ← V ′b
C + V ′w

N − 1;
15 P ∗ ← P ∗ ∪ [V ′b

N , V
′a
N ];

16 V ′
C ← V ′

N ;
17 mark V ′

C visited;

18 return P ∗

Hence,P ∗ is a proper spectrum assignment, and the MUFI of

P ∗ equals
χ(G)−1∑
i=1

de′′
i
+
χ(G)∑
i=1

v′wi ≤
χ(G)−1∑
i=1

de′
i
+
χ(G)∑
i=1

v′wi . By

now, the inequality of the right side is proven.
Next, we prove the left side. As a maximal cliqueψ is a

subgraph ofG, we have|opt(ψ)| ≤ |opt(G)|. Hence, we just
need to prove|MHP(ψ)| + ψw ≤ |opt(ψ)| for any ψ. If we
assume thatP (ψ) is an optimal proper spectrum assignment
for ψ, the FS sets assigned to all the vertices would be
mutually disjoint sinceψ is a complete subgraph. The distance
between any two FS sets inP (ψ) would not be smaller than
the weight of the edge connecting the two vertices. Hence,
the value of solutionP (ψ) would not be smaller than the
length of the minimum Hamilton path plus the total weight of
all the vertices,i.e., |MHP(ψ)| + ψw ≤ |P (ψ)| = |opt(ψ)|.
Consequently, we finish the proof.

Fig. 7. A proper spectrum assignment forC(G).

In general, it is known that calculating the chromatic number
of a graph is extremely difficult. Hence, we provide a more
practical method to calculate the bounds. For a graphG, we
haveχ(G) ≤ ∆(G) + 1 according to the Brook’s theorem
[29], where ∆(G) is the maximum degree ofG. With a
DSA conflict graphG(V,E, {vwi }, {dvivj}), we sort the edges
and vertices inG in the descending order of their weights,
respectively. To avoid confusion, we rename the sorted edges
and vertices by denoting thei-th largest-weighted edge as
esi and the vertex with thei-th biggest weight asvsi , i.e.,
des
i
≥ des

j
, vs

w

i ≥ vs
w

j , ∀i < j, esi , e
s
j ∈ E, v

s
i , v

s
j ∈ V . Then,

we have the following corollary.
Corollary 2: If G(V,E, {vs

w

i }, {desi }) is a DSA conflict

graph, we have|opt(G)| ≤
∆(G)∑
i=1

des
i
+

∆(G)+1∑
i=1

vs
w

i .

Proof: Based on the construction procedure ofC(G)

and the Brook’s Theorem, we have
χ(G)−1∑
i=1

de′
i
+
χ(G)∑
i=1

v′wi ≤

χ(G)−1∑
i=1

des
i
+

χ(G)∑
i=1

vs
w

i ≤
∆(G)∑
i=1

des
i
+

∆(G)+1∑
i=1

vs
w

i . Then, with

Theorem 4, we can verify the proof.
In order to make a fast estimation for the bounds of the

DSA’s optimal solution, we can say that the MUFI would not
exceed the total weight of∆(G) largest-weighted edges plus
the total weight of∆(G) + 1 largest-weighted vertices inG.

Corollary 3: The two bounds obtained in Theorem 4 are
tight.

Proof: χ(G) and ψ are vital for the two bounds. If
G(V,E) is a perfect graph3, then the two bounds can
converge under certain conditions. For instance, bipartite
graphs are perfect graphs. For a bipartite graphG(V,E), each
ψ(G) just contains one edge. As a result, the lower bound
max

ψ∈Ψ(G)
{|MHP(ψ)|+ψw} becomesmax

viuj∈E
{dviuj +v

w
i +uwj }.

In this case,|opt(G)| reaches this lower bound according to
Theorem 3. Moreover, whenχ(G) = 2, the upper bound
equalsmax

e∈E
(de)+ max

∀vi,∀uj
{vwi +uwj }. Whenvwi anduwj are the

weights of two adjacent largest-weighted vertices anddviuj
is also the maximum weight of the edges, the upper bound
equals the lower bound. Hence, the two bounds are tight.

V. ORDEREDDISTANCE SPECTRUM ASSIGNMENT

(ODSA)

In order to solve DSA efficiently, we simplify it to an
ordered DSA (ODSA) problem, which we will prove that
can be solved optimally in polynomial time. Basically, ODSA
bears the same objective and constraints of DSA, and besides,
it imposes a newvertex order constraint as follows. The
vertices should be ordered such that the start-FS indices of
vertices are in the ascending order,i.e.,

Oi = (vi1 , vi2 , ..., vin) : v
b
ij
≥ vbik , ∀j > k (12)

With the ordered vertices, ODSA becomes a much easier
problem than DSA. We formulate the ILP model for ODSA:

Minimize y (ILP-ODSA),

s.t. Eqs. (14)-(18).
(13)

3A graphG is perfect ifχ(G) = max
ψ∈Ψ

|ψ(G)| [22].
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xaij − x
b
ij
+ 1 = vwij , ∀1 ≤ j ≤ |V | (14)

xbij − x
a
ik
≥ dvij vik + 1, ∀j > k, vijvik ∈ E (15)

xbij ≥ x
b
ik
, ∀j > k (16)

y ≥ xaij , ∀1 ≤ j ≤ |V | (17)

xaij ∈ N+, xbij ∈ N+, ∀1 ≤ j ≤ |V | (18)

Then, we design a polynomial-time algorithm (O-L) to solve
ODSA optimally, and its procedure is shown inAlgorithm 2.

Algorithm 2: Procedure of O-L

Input : A DSA graphG(V,E, {vwi }, {dvivj}), and a
vertex orderOi = (vi1 , vi2 , ..., vin)

Output : An assignment strategy for the star-index
Seq= {vbij : 1 ≤ j ≤ |V |} and the MUFI

1 vbi1 ← 1;
2 vai1 ← vwi1 ;
3 Seq← vbi1 ;
4 j ← 2;
5 while j ≤ |V | do
6 s1 ← max

∀k<j,vikvij∈E
{vaik + dvik vij + 1};

7 s2 ← vbij−1
;

8 vbij ← max{s1, s2};
9 vaij ← vbij + vwij − 1;

10 Seq← Seq∪ {vbij};
11 j ← j + 1;

12 return Seq and max
1≤j≤|V |

(vaij )

The main idea ofAlgorithm 2 is to assign the FS sets to
vertices in sequence according to the pre-defined order such
that vbij takes the smallest possible value to satisfy all the
constraints of ODSA. We begin with vertexvi1 , and set its
start-FS indexvbi1 as 1 and its end-FS index according to its
bandwidth demand,i.e., vai1 = vwi1 . Then,vbi1 is added to the
spectrum assignment scheme Seq. For each vertexvij , we use
s1 to denote the smallest index permitting to keep enough
guard-bands from the adjacent vertices ofvij that have already
been assigned FS sets, and uses2 = vbij−1

to satisfy the order
constraint. Then, the start-index ofvij is max{s1, s2}, and
the end-index equalsmax{s1, s2} + vwij − 1. The procedure
terminates when all the vertices have been assigned FS sets.
The time complexity ofAlgorithm 2 isO(|E|).

Theorem 5: Algorithm2 obtains an optimal FS assignment
scheme for ODSA.

Proof: Firstly, it is easy to verify that the spectrum
assignment scheme in Seq is a feasible solution for ODSA,
since all the constraints are satisfied. Then, we prove that Seq
indicates an optimal ODSA solution by contradiction. If Seq
is not optimal,opt = {vb

opt

ij
: 1 ≤ j ≤ |V |} would be the

optimal start-index arrangement for ODSA andopt 6= Seq.
Let j be the index of the first vertex such thatvb

opt

ij
6= vbij (

∵ vb
opt

i1
= vbi1 = 1⇒ j ≥ 2 ). Then, with the greedy strategy,

we havevb
opt

ij
> vbij . For j + 1, let Foptj+1 andFj+1 be the

feasible region forvb
opt

ij+1
andvbij+1

in ILP-ODSA (cf., Eq. (13)),

respectively. The other constraints are the same forvb
opt

ij+1
and

vbij+1
except for Eq. (16),i.e., vb

opt

ij+1
≥ vb

opt

ij
andvbij+1

≥ vbij .

As vb
opt

ij
> vbij , the lower bound ofFj+1 denoted asζj+1

would not be larger than that ofFoptj+1 denoted asζoptj+1. Since
we can getvbij+1

= ζj+1 with the greedy strategy ofAlgorithm

2, we havevb
opt

ij+1
≥ ζoptj+1 ≥ ζj+1 = vbij+1

. By induction, we

have vb
opt

ik
≥ vbik , wherek is within [j, |V |]. Therefore, we

prove that the MUFI of ODSA underopt arrangement would
not be smaller than that is provided by Seq, which causes the
contradiction. Then, we finish the proof.

Corollary 4: A DSA problem can be solved optimally with
Algorithm 2 under certain vertex order.

Proof: If opt is an optimal solution for a DSA problem,
there has to be an orderOopt among the start-FS indices of
opt. Therefore, the optimal solution for ODSA with vertex
orderOopt equals that of the DSA problem. With Theorem 5,
we prove thatAlgorithm2 can get the optimal solution for the
DSA problem under the orderOopt.

Now, we can see that it would be vital to determine the
optimal vertex order. Note that, in the analysis above, we
actually have already transformed the DSA problem into
the permutation-based optimization problem (POP). POP is
a classical combinational optimization [30]: LetS be a set of
n elements,Σ be the permutation space that consists ofn!
permutations overS, and f(·) be an estimation function for
anyσ ∈ Σ. The objective of POP is to optimizef(·) overΣ.

σ∗ = argmin
σ∈Σ

f(σ). (19)

For the DSA problem,S is vertex setV , Σ is the whole|V |!
vertex orders and we can utilizeAlgorithm2 as our estimation
function. In the next section, we will get an initial vertex order
with a heuristic algorithm and then improve the vertex order
with the nested partitions method (NPM) [31].

VI. T IME-EFFICIENT APPROXIMATION ALGORITHM FOR

DSA

For any DSA problem, if the vertex order (i.e., in the
ascending order of the start-FS index) in the optimal solution
is known beforehand, then it can be transformed into an ODSA
problem and solved optimally byAlgorithm 2 in polynomial
time. Inspired by this, we develop a two-phase algorithm to
solve DSA. Specifically, in the first phase, we use a greedy
strategy to generate an initial vertex order, and then the second
phase utilizes NPM to improve the initial order.

A. First Phase Greedy Algorithm (FPGA)

For a DSA conflict graphG(V,E, {vwi }, {dvivj}), we can
get the initial vertex order with the following procedure.
Firstly, we start from any vertexvi ∈ V , and find the FS
set for vi with a greedy strategy,i.e., vbi = 1 and vai = vwi .
Meanwhile, we set a variableOi to record the order of vertices
according to the assigned FS sets. Hence,Oi takesvi as the
first element. Then, we find the vertexvj from the vertices
that are not yet inOi to ensure thatvbj is the minimum to
satisfy the constraints of DSA for all the vertices that are in
Oi. We insert thisvj into Oi and assign the corresponding FS
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set to it. The same procedure is repeated until all the vertices
have been included intoOi. After |V | while-loops,|V | vertex
orders{O1, O2, ..., O|V |} have been generated and we choose
the one that results in the minimum MUFI as our initial order.
Algorithm 3 gives the procedure of the proposed First Phase
Greedy Algorithm (FPGA). InLines1-3, starting fromj = 1,
we initializeOj as∅ and usesj to record the current MUFI
used inOj , whose initial value is 0. Then, inLines 4-20,
with the |V | while loops, we generate|V | vertex orders. As
mentioned above,Lines 5-8 let vj be added intoOj , assign
the FS set to it, and updatesj as sj = vwj . In the for-loop
coveringLines9-20, we organize the remaining vertices forOj
one by one using the aforementioned greedy strategy. Finally,
we select the vertex order that results in the minimum MUFI.
We can see that there are three cascading loops inAlgorithm
3, and thus its time complex isO(|V |3 ·∆), where|V | is the
number of vertices and∆ is the maximum degree ofG.

Algorithm 3: Procedure of FPGA

Input : G(V,E, {vwi }, {dvivj})
Output : An initial vertex order and an initial MUFI

1 j ← 1;
2 Oj ← ∅; % initialize vertex orderO1

3 sj ← 0; % record the MUFI ofO1

4 while j ≤ |V | do
5 Oj ← Oj ∪ {vj};
6 vbj ← 1;
7 vaj ← vwj ;
8 sj ← vwj ;
9 for i = 2 : |V | do

10 v ← ∅; % v is the next vertex enteringOj
11 vb ← B; % B is large enough
12 vw ← 0;
13 for k = 1 : |V | do
14 if vk /∈ Oj then
15 vbk ← max

∀vl∈Oj ,vkvl∈E
{val + dvkvl + 1};

16 if vbk < vb then
17 v ← vk; vb ← vbk; vw ← vwk ;

18 Oj ← Oj ∪ {v};
19 va ← vb + vw − 1;
20 sj ← max{sj , va};

21 j ← j + 1; Oj ← ∅; sj ← 0;

22 O∗ = argmin
Oj

1 ≤ j ≤ |V |

sj ; s∗ = argmin
sj

1 ≤ j ≤ |V |

sj ;

After getting the initial vertex orderO∗ and initial MUFI
value s∗, we utilize NPM to improve the initial solution. In
the next subsection, we will provide the details of NPM and
our two-phase algorithm.

B. Two-phase Algorithm

The NPM method was proposed in [31] to leverage a general
random method to solve global optimization problems, which

includes POP. Specifically, we consider the following problem

θ∗ = argmin
θ∈Θ

f(θ), (20)

whereΘ is the entire solution space andf(·) : Θ→ R is the
objective function. Firstly, NPM gives apartitioning schemeto
partitionΘ systematically, and then it uses a iterative approach
to optimizef(·). In each iteration, NPM operates on a solution
spaceη, which is a subset ofΘ from the partitioning scheme
and is named asthe most promisingregion. Then, according to
the partitioning scheme, we divide the most promising region
η intoM(η) disjoint subregions, and we callΘ\η surrounding
region. Note that, if the partition scheme obtains a region, then
we say the region isvalid, and if a valid regionσ is formed by
partitioning a valid regionη, thenσ is asubregionof η andη is
called thesuperregionof σ. Therefore,η is divided intoM(η)
disjoint subregions. Next, each of theM(η) subregions and the
surrounding region are sampled by arandom sampling scheme
and we use the objective function to evaluate the samples
and calculate thepromising indexfor each subregion. If the
promising index of a subregion among theM(η) subregions
of η turns to be the best one, we set this subregion as the
most promising region in the next iteration. If the surrounding
region is proven to be the best, the method willbacktrackto
another region to be the next most promising region (e.g., a
region that contains the previous most promising region or
a subregion ofΘ that contains the best sample). The most
promising region is then partitioned and sampled with the
procedure discussed above.

For DSA, the entire solution spaceΘ is the |V |! vertex
orders and the objective function isAlgorithm2. In the second
phase of the time-efficient approximation algorithm for DSA,
the partitioning scheme is as follows: we first divideΘ into
n disjoint subregions by choosingv1, v2, ..., v|V | as the first
vertex in the ordered vertices, and then each of the|V |
subregions is divided into|V | − 1 subregions by selecting
the second vertex and so on so forth. Fig. 8 provides an
illustrative example on the partitioning scheme for DSA. The
random sampling scheme samples the surrounding region and
each subregion uniformly and the most promising region will
backtrack to the least supperregion if the promising index
in the surrounding region is the best. The vertex orderO∗

obtained byAlgorithm3 is the original most promising region.

Fig. 8. Example on the partitioning scheme for DSA.

VII. A LGORITHM ANALYSIS

In this section, we analyze the performance of the two-phase
algorithm, which is composited byAlgorithm 3 (i.e., an ap-
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proximation algorithm) and NPM (i.e., a random optimization
algorithm). ForAlgorithm 3, as DSA is intractable according
to Theorem 2, we focus the analysis on some specific graph
types,e.g., complete graphs and bipartite graphs. For NPM,
we provide two of its key properties,i.e., the convergence
performance and the number of expected iterations.

A. Approximate Ratio of FPGA in Special Graphs

1) Complete Graph with Triangle Inequality:If a DSA
conflict graphG(V,E) is a complete graph, the FS sets
assigned to the vertices must be pairwise disjoint. Hence,
to satisfy the bandwidth requirement and spectrum contiguity
constraints, the union of the FS sets assigned to the vertices has
a fixed cardinality, denoted asV w =

∑n

i=1 v
w
i . Consequently,

the optimization objective in this case is equivalent to mini-
mize the sizes of the guard-band between any two spectrally
adjacent FS sets under the spectrum set distance constraint.

An algorithm, calledNearest Neighbor(NN) to solve MHP,
can guarantee an approximate ratio for complete conflict
graphs that satisfy the triangle inequality.Algorithm 4 shows
the procedure of NN.

Algorithm 4: Procedure of NN

Input : G(V,E), vi, {dvivj}
Output : A Hamilton pathP

1 set CurrentVertex← vi;
2 mark vi visited;
3 while G still has unvisited verticesdo
4 find vertexv which is the nearest neighbor to

CurrentVertex among all the unvisited vertices inG;
5 CurrentVertex← v;
6 mark CurrentVertex visited;
7 P ← P ∪ {v};

8 return P

Let |NN(G)| denote the length of the Hamilton path
produced byAlgorithm4 and|MHP (G)| denote the length of
the minimum Hamilton path. Then according to [27, 32], we

have the approximate ratio
|NN(G)|

|MHP (G)|
≤

1

2
(⌈log2(|V |)⌉+1).

For a complete DSA conflict graphG(V,E, {vwi }, {dvivj})
that satisfies the triangle inequality, we applyAlgorithm3 toG.
Note that, the while-loop inAlgorithm3 obtains a vertex order
Oj in thej-th iteration. There is a proper spectrum assignment
induced byOj , which in fact represents a Hamilton path in
G. Then, we have Lemma 1.

Lemma 1: If the conflict graphG is a complete graph that
satisfies the triangular inequality, the Hamilton path induced
by the orderOj from Algorithm 3 is equivalent to the result
from Algorithm 4 with input vj .

Proof: We assume that the orderOj obtained in the
j-th while-loop of Algorithm 3 is (vj1 , vj2 , ..., vjn), where
vj1 = vj . At first we have |Oj | = 1, which means that
only vj1 is included in orderOj . Then, with the greedy
strategy ofAlgorithm 3, vj2 is the nearest neighbor tovj1
in G. Supposing this inference is true when|Oj | = k, where

k < |V |, we assertvjk+1
is the nearest neighbor ofvjk among

those vertices that are not yet inOj . After we have included
the firstk vertices inOj , the innermost for-loop ofAlgorithm3
searches the(k+1)-th vertexi.e.,vjk+1

, whose FS start-index
is the smallest among those unordered vertices. We usevl to
denote the nearest neighbor ofvjk among all the unordered
vertices. Since the triangle inequality is held, the spectrum
set distance constraint forvjk+1

only comes fromvjk , i.e.,
vbjk+1

= vajk + dvjkvjk+1
+ 1. As dvjk vl is the smallest guard-

band size,vbjk+1
= vajk + dvjkvl + 1 reaches the minimum.

Therefore, using the greedy strategy, we can getvjk+1
= vl

and the proof is verified.
In fact, we select the minimum one from{O1, O2, ..., On}

after |V | while-loops inAlgorithm 3. Let |FPGA(G)| be the
finial output value and|opt(G)| be the optimal value for a
DSA conflict graphG. Then, according to Lemma 1 and the
analysis above,|FPGA(G)| − V w and |opt(G)| − V w are
the length of the Hamilton path produced byAlgorithm4 and
|MHP (G)| respectively. Then, we get the following theorem.

Theorem 6:If G(V,E, {vwi }, {dvivj}) is a complete DSA
conflict graph that satisfies the triangle inequality, the ap-
proximate ratio ofAlgorithm 3 would not be larger than
1

2
(⌈log2(|V |)⌉+ 1).4

Proof: According to the analysis above, we have
|FPGA(G)| − V w

|opt(G)| − V w
≤

1

2
(⌈log2(|V |)⌉+1). As |FPGA(G)| ≥

|opt(G)|, we have
|FPGA(G)|

|opt(G)|
≤
|FPGA(G)| − V w

|opt(G)| − V w
≤

1

2
(⌈log2(|V |)⌉+ 1).

2) Bipartite Graphs:Then, we consider the case in which
the DSA conflict graph is a bipartite graph. Before the analysis,
we introduce the following definition.

Definition 1: For a bipartite graphG(V1, V2), V1 and V2
are the two parts of the vertices inG. We call its vertex
labeling is good if the vertices are labeled in the way that
the vertices inV1 are labeled as the first|V1| ones, i.e.,
{v1, v2, ..., v|V1|} = V1, and apparently, the remaining vertices
are all inV2 and labeled as{v|V1|+1, v|V1|+2, ..., v|V |} = V2.
For a bipartite graphG(V1, V2), the time needed to get a good
vertex labeling isO(|E|).

Theorem 7:If a DSA conflict graph
G(V,E, {vwi }, {dvivj}) is a bipartite graph and we label its
vertices in a good way,Algorithm 3 can get the optimal
solution for DSA.

Proof: Let V1 and V2 be the two parts of a bipartite
V . According toAlgorithm 3 and Theorem 3, we just need
to prove the MUFI obtained with orderO1 in Algorithm 3
equals max

vivj∈E
{dvivj + vwi + vwj }. After v1 has enteredO1,

sinceV1 is an independent set,Algorithm 3 includes vertices
v2, ..., v|V1| in O1 in sequence andvbi = 1, 1 ≤ i ≤ |V1|. Also,
becauseV2 is an independent set,vbi = max

∀vj∈V1,vivj∈E
{vaj +

dvivj + 1}, |V1| + 1 ≤ i ≤ |V |. Therefore, considering

4Actually, for this special case,Double Minimum Spanning Treealgorithm
[33] of MHP can be utilized for DSA, which can guarantee a 2-approximation
ratio with the similar proof of Theorem 6.
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the four constraints of DSA, we get the MUFI ofO1 as
max
vivj∈E

{dvivj + vwi + vwj }.

B. Convergence Performance and Expected Number of Itera-
tions of Two-phase Algorithm

1) Convergence Performance:For Algorithm3, we assume
that the partitioning scheme has been defined and letΣ denote
the set of all the valid regions, whereσ(0) is the initial region
state,i.e., the initial vertex order that is obtained, andσ(k) ∈
Σ is the region state of thek-th iteration. Then,{σ(k)}∞k=0 is
the iteration sequence and the region stateσ(k + 1) depends
on the estimated values of the promising index in the state
σ(k), which is related with the sampling points. Therefore,
{σ(k)}∞k=0 is a Markov chain with state spaceΣ, and we
have Theorem 8 according to [31].

Theorem 8:η ∈ Σ is an absorbing state of the Markov
chain{σ(k)}∞k=0, if and only if η is the optimal vertex order
for DSA.

Proof: Firstly, we prove the “if" part and use Algorithm
2 as the object functionf(·) to evaluate the promising index
of a region. If we assume thatη is the optimal vertex order for
DSA, then the transition probability of staying inη is: Pηη =
P [f(η) ≤ f(Θ\η)] = 1. Hence,η is an absorbing state. Next,
we prove the reverse. Supposingξ is an absorbing state and
ξ does not represent the optimal order for DSA, the transition
probability of not staying inξ is: PξΘ\ξ = P [f(ξ) > f(Θ\ξ)]
≥ P [randomly select a pointθ in Θ\ξ andf(θ) < f(ξ)] > 0.
This inequality reveals thatξ is a transient state, which leads
to a contradiction. Therefore, we finish the proof.

According to Theorem 8, the Markov chain will eventually
converge to an optimal vertex order and stay there forever.
Since the transient states are finite, we can see that the Markov
chain would reach an optimal vertex order within finite time.

2) Expected Number of Iterations:The expected number
of iterations to reach the optimal vertex order directly impacts
the time-efficiency of our two-phase algorithm. To evaluate
the expected number of iterations, we need to introduce
several random variables and symbols [34]. We useΣ to
represent the state space,σopt to represent the optimal solution
regions,i.e., the optimal vertex order. We defineΣ1 = {η ∈
Σ\{σopt}|σopt ∈ η}, i.e., the valid regions that includeσopt
andΣ2 = {η ∈ Σ\{σopt}|σopt /∈ η}, i.e., the valid regions that
do not includeσopt. Then, we haveΣ = {σopt}∪Σ1∪Σ2. We
useYη to denote the number of visits of a stateη ∈ Σ and use
Tη to represent its hitting time (the first time of visiting this
state). Besides, we denote the probability of an event under
constraint that the chain starts in a stateη ∈ Σ asPη[event].

According to [34], the number of iterations for the Markov
chain to reach an absorbing stateY equals the number of itera-
tions to visit all the transient states plus one (i.e., the transition
to the absorbing state), which isY = 1+

∑
η∈Σ1

Yη +
∑
η∈Σ2

Yη.

As Σ is finite, we get the expected number of iterations as

E[Y ] = 1 +
∑

η∈Σ1

E[Yη] +
∑

η∈Σ2

E[Yη]. (21)

Theorem 9:Let σ(0) be the initial vertex order provided
by Algorithm 3. The expected number of iterations for our
two-phase algorithm to get the optimal solution for DSA is

E[Y ] = 1 +
∑

η∈Σ1

1

Pη[Tσopt < Tη]

+
∑

η∈Σ1

Pσ(0)[Tη < min{Tσ(0), Tσopt}]

Pη[Tσ(0) < Tη] · Pσ(0)[Tσopt < min{Tσ(0), Tη}]
.

(22)

Proof: As given in [31], the expected number of visits to
the transient states is

E[Yη] =



















1

Pη [Tσopt < Tη ]
, η ∈ Σ1,

Pσ(0)[Tη < min{Tσ(0), Tσopt}]

Pη [Tσ(0) < Tη ] · Pσ(0)[Tσopt < min{Tσ(0), Tη}]
, η ∈ Σ2.

(23)

By substituting Eq. (23) in Eq. (21), we finish the proof.
In each iteration, we at most taken sampling points in then

valid regions. Each sampling and calculating of the promising
index will use the Procedure O-L whose time complexity
is O(|E|). Therefore, the expected time complexity for the
second phase isO(|V | · |E| · E(Y )).

Although we have Theorem 9, calculating the expected
number is still tough. Hence, we leverage the approximation
stochastic model in [34]. Specifically, in each iteration, if the
promising index of the surrounding region is the best, we
backtrack to the entire solution spaceΘ. Let P0 be the the
probability of the two-phase algorithm moving towards the
correct direction,i.e., backtracking if the optimal solution is
not in the current most promising region and selecting the
correct subregion otherwise. Then, we have Theorem 10.

Theorem 10:Assuming the above approximation stochastic
model is held, the expected number of iterations for two-phase
algorithm to find the optimal solution for DSA is

E(|Y |) =
1

Pn0
(1−

(1 − P0)
n

n!
)

− (

n−2∑

d=0

(n− d)!

n!
·
(1− P0)

d

Pn−1
0

) + (
1

Pn−1
0

·
P0 − Pn0
1− P0

), (24)

wheren = |V | is the number of vertices inG.
Proof: Theorem 10 can be proved using the similar

procedure that proves Theorem 2 in [34].
With the approximate expected number, we can set the

stopping criteria to terminate the two-phase algorithm under
certain probability significance. We utilize the expected num-
ber in Eq. (24) and apply the Markov inequality:P (|Y | ≥
ε) ≤ 1

εα
E(|Y |)α to get the upper bound of the number of

iterations for finding the optimal solution for DSA.

VIII. N UMERICAL RESULTS

In this section, we evaluate the performance of our proposed
two-phase algorithm. As DSA is a new spectrum assignment
model, there is no existing heuristic algorithm for comparison.
Hence, we applied Pure Random Algorithm (PRA) as the
benchmark algorithm, in which we randomly selected a vertex
order at each iteration and calculate the optimal solution
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for this vertex order by usingAlgorithm 2. The ILP model
for DSA was solved by MATLAB2015a with the CPLEX
toolbox and the approximate solutions from our two-phase
algorithm and PRA were both obtained with MATLAB2015a
under the same number of iterations. We run30 independent
simulations on each conflict graph and average the results to
ensure sufficient statistical accuracy. We set the probability of
moving in the correct direction asP0 = 0.5 in Eq. (24) and
the significance probability as90%. All the simulations run on
a computer with 3.2 GHz Intel(R) Core(TM) i5-4690S CPU
and 8 GBytes RAM.

A. Simulation Setup

We perform simulations in different scenarios:

• Random graphs: We use the NetworkX package [35]
to generate random graphs, in which each vertex pair
is directly connected with a probability of0.5, as DSA
conflict graphs. The weights of vertices and edges are ran-
domly chosen within[1, |V |]. Specifically, Fig. 9 shows
the six random graphs that are used in the simulations.
They have |V | ∈ [14, 19]. Hence, we assessed the
performance ofAlgorithm3 and our two-phase algorithm
under the pure random conditions.

• Complete graphs with random weights: To reveal the
effectiveness of the two-phase algorithm, we also use
complete conflict graphs with|V | ∈ [14, 19], whose
vertex and edge weights were also randomly chosen
within [1, |V |], as the DSA conflict graphs.

• Edge number: By intuition, the more edges or the larger
the biggest guard-band size that a conflict graph has, the
bigger its MUFI is. Therefore, we apply the two-phase
algorithm on six random conflict graphs, each of which
has 14 vertices and the number of edges ranges within
{15, 30, 45, 60, 75, 90} as shown in Fig. 10. The vertex
and edge weights are still chosen randomly as above.

• 14-node NSFNET and 28-node US Backbone: To
mimic the realistic situations, we run simulations on two
practical EON topologies, i.e., the 14-node NSFNET and
the 28-node US Backbone [13]. Here, each lightpath
request is randomly generated and we use the shortest
path to route it. The guard-band requirement between
two lightpaths is computed as the number of common
links on their routing paths. Following these principles,
DSA conflict graphs are constructed and we applied the
two-phase algorithm to solve the DSA problems.

B. Simulation Results

1) Random Graphs:Table III presents the average MUFI
computed by PRA, FPGA, two-phase and ILP-DSA, respec-
tively for the six random topologies in Fig. 9. The relative
gaps (errors-optimal ratios) with a 95% confidence interval
are shown in Fig. 11. In Table III, both the initial solutions
from FPGA and the improved solutions from the two-phase
algorithm are better than those from PRA under the same
number of iterations. We also observe that the solutions are
truly improved in the second phase, since the MUFI from the

(a) 14-vertex (b) 15-vertex (c) 16-vertex

(d) 17-vertex (e) 18-vertex (f) 19-vertex

Fig. 9. Six random graphs with 14-19 vertices.

(a) 15 edges (b) 30 edges (c) 45 edges

(d) 60 edges (e) 75 edges (f) 90 edges

Fig. 10. Six random graphs with 14 vertices and 15-90 edges.

two-phase algorithm are closer to the optimal one obtained
from FPGA, as shown in Fig. 11. Another notable fact is that
the results of Fig. 9(b) are better than those in Fig. 9(a). We
observe that there is a vertex with degree one in the topology
of Fig. 9(b), which is different from Fig. 9(a). This fact implies
that the topology does have impact on the final MUFI.

TABLE III
NUMERICAL RESULTS FORFIG. 9

Fig. 9 (a) (b) (c) (d) (e) (f)
PRA 95.2 92.8 104. 128. 147. 160.

FPGA 75.4 75.3 77.4 96.5 101. 111.
Two-phase 72.7 72.5 75.5 91.0 99.4 110.
ILP-DSA 71.6 70.1 73.6 87.5 94.5 105.

2) Random Complete Graphs:Table IV presents the aver-
age MUFI obtained in the six random complete graphs. The
relative gaps with a 95% confidence interval are shown in Fig.
12. We can observe the similar trends as discussed above for
random conflict graphs. Moreover, we can see that both the
relative gaps and the confidence intervals in complete graphs
are smaller than those in random graphs for two-phase, FPGA
and PRA. This can be interpreted as follows. In complete
graphs, the FS set assigned to each vertex should be mutually
disjoint, which makes the optimal MUFI (computed by the
ILP) bigger. While in random graphs, the FS sets assigned
to certain vertices could be overlapped, and hence the optimal
value of MUFI would be smaller. However, the overlapped FS
sets make it more difficult for the three algorithms to optimize
the spectrum assignment, which leads to smaller relative gaps
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Fig. 11. Relative gaps of Table III by Two-phase, FPGA and PRA.

and confidence intervals in complete graphs.

TABLE IV
NUMERICAL RESULTS FORRANDOM COMPLETE GRAPHS

# vertices 14 15 16 17 18 19
PRA 169.0 194.1 238.7 259.1 283.3 297.3

FPGA 145.0 164.7 197.4 216.5 234.4 246.1
Two-phase 143.6 163.6 196.6 213.3 231.3 241.5
ILP-DSA 142.4 160.5 191.1 207.6 223.7 231.8

14 15 16 17 18 19
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Fig. 12. Relative gaps of Table IV by Two-phase, FPGA and PRA.

3) Edge number:Fig. 13 plots the simulation results on
six random graphs in Fig. 10. The results on MUFI from two-
phase algorithm and ILP-DSA are marked as purple and blue
bars respectively, and the approximate ratio is plotted in red
line. It can be seen that the approximate ratio of the two-phase
algorithm increases with the number of edges in the conflict
graph.

These results coincided well with the intuitive observation
that the more edges or the bigger edge weights that a graph
has, the more spectrum resources that DSA would consume.
The feature also inspires us that a good routing algorithm
should be used to reduce the common links and thus further
improve the quality of the results for DSA in EONs.

4) 14-vertex NSFNET and the 28-vertex US Backbone:
We evaluate the performance of two-phase algorithm with two
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Fig. 13. Numerical results for Edge number scenario.

practical EON topologies. In Table V, we can see that ILP-
DSA can only get the optimal solution when the number of
lightpaths is within50. Meanwhile, our two-phase algorithm
can obtain almost the same solutions as ILP-DSA.

Based on all these observations, we can conclude that our
proposed two-phase algorithm can approximate the optimal
solution for DSA well.

IX. CONCLUSIONS

In this paper, we studied the DSA problem in EONs. By
reducing MHP and graph coloring to DSA, we have proven
that DSA isNP-hard and inapproximable. Then, we analyzed
and provided the upper and lower bounds for the optimal
solutions of DSA, and proved that they are tight. Next, by
leveraging a vertex order and developing a polynomial-time
algorithm (i.e., Algorithm 2), we transformed DSA into POP.
Then, we developed a two-phase algorithm to solve DSA
time-efficiently. For the first phase (i.e., Algorithm 3) in the
algorithm, we theoretically proved that its time complexity
is O(|V |3 · ∆), and it can get the optimal solution for
bipartite conflict graphs and guarantee an approximate ratio
of O(log(|V |)) for complete conflict graphs with triangle
inequality. The second phase utilized a random optimization
algorithm, and we applied theoretical analysis to obtain the
expected number of iterations for getting the optimal solution.
The numerical simulation results demonstrated that our two-
phase algorithm can find the near-optimal solutions for DSA
in various conflict graphs.
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