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Abstract—In elastic optical networks (EONSs), two lightpaths
sharing common fiber links might have to be isolated in the
spectrum domain with a proper guard-band to prevent crosst#k
and/or reduce physical-layer security threats. Meanwhile the
actual requirements on guard-band sizes can vary for diffeent
lightpath pairs because of various reasons. Therefore, inhis
work, we consider the situation in which the actual guard-
band requirements for different lightpath pairs are differ ent,
and formulate the distance spectrum assignment (DSA) proleim
to investigate how to assign the spectrum resources efficitiy in
such a situation. We first define the DSA problem formally and
prove its N'P-hardness and inapproximability. Then, we analyze
and provide the upper and lower bounds for the optimal soluton
of DSA, and prove that they are tight. In order to solve the DSA
problem time-efficiently, we develop a two-phase algorithmIn
its first phase, we obtain an initial solution and then the seend
phase improves the quality of the initial solution with random
optimization. We prove that the proposed two-phase algorttm
can get the optimal solution in bipartite DSA conflict graphs
and can ensure an approximate ratio ofO(log(|V])) in complete
DSA conflict graphs, where|V| is the number of vertices in the
conflict graph, i.e.,, the number of lightpaths to be considered.
Numerical results demonstrate our proposed algorithm can fid
near-optimal solutions for DSA in various conflict graphs.

Index Terms—Elastic Optical Networks (EONs), Distance
Spectrum Assignment (DSA), Physical-Layer Security.

I. INTRODUCTION

requests in an EON,e.,, R;, Rs and R3, and their bandwidth
requirements are 2, 4 and 3 FS, respectively. The spectrum
assignments of these lightpaths are illustrated at th@imotf

Fig. 1 with blocks in different colors.
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Fig. 1. Spectrum assignments with guard-bands in EONs.

Note that, in order to minimize the potential physical-
layer security threat due to inter-channel crosstalk [BE t
spectrum assignments of two lightpaths should be separated
by a sufficient guard-band when their routing paths share one
or more fiber links [7, 8]. These guard-bands, as shown in
Fig. 1, can have different sizes, which are not trivial since

ECENTLY, with the rapid growth of traffic demands inthey determine the impact of inter-channel crosstalk betwe
backbone networks, how to utilize the spectral resourcgt® lightpaths. In general, the stronger the crosstalklleve
in optical fibers efficiently and intelligently has becomeeyk is or the higher the security requirement is, a larger sized

challenge for all-optical networks. To address this cmaje

guard-band should be applied. Since the crosstalk levebean

flexible-grid elastic optical networks (EONs) have been-praffected by many factors such as the required bandwidth, the
posed to enhance the agility of bandwidth allocation in the onumber of common fiber links and the lightpaths’ modulation-

tical layer [1, 2]. Specifically, in EONSs, the bandwidth-iedole

levels [9] while the security requirement would depend an th

transponders (BV-Ts) and wavelength-selective switcB& ( defense of various physical-layer attacksy, eavesdropping

WSS’) establish lightpaths with several narrow-bang.,(

and jamming attacks [10], the actual guard-band require-

12.5 GHz) and spectrally-contiguous frequency slots (FS) amdents in EONs would change for different lightpath pairs.
realize data transmissions over them [3]. Therefore, EGi¥s dNevertheless, the guard-bands’ sizes and the way in which
offer just-enough bandwidth to traffic demands from uppewe deploy them would generate spectrum fragmentation and
layer networks, with the fine bandwidth allocation granityar hence significantly influence the spectrum utilization inNEO

of an FS [4, 5]. For instance, in Fig. 1, there are three ligtitp [11, 12].
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Therefore, the service provisioning scheme that uses guard
bands with constant sizes [13] might not be suitable to keandl
the situation in which the crosstalk levels and/or the sgcur
requirements of lightpath pairs are diverse. For instamce,
fix-sized guard-band might be insufficient to mitigate astyo
crosstalk level while result in spectrum waste for satigyi
a relatively low security requirement. Hence, it would be
relevant to study how to realize spectrum assignments with
various guard-band sizes efficiently.



In this paper, we put forward a new spectrum assignmesmd hence attracted intensive research interests [1-41-7, 1
model, which uses guard-bands with different sizes to afbaptl5]. The authors of [1] systematically discussed the engbli
the crosstalk level or the security requirement of eachfigth technologies and building blocks of EONs.,g, bandwidth-
pair in an EON. Our model is hamed as distance spectrwariable wavelength cross-connects (BV-WXCs), and laitl ou
assignment (DSA). We consider the network planning probletime network architecture of EON, which enables flexible band
in which all the lightpath requests and their routing pathsidth allocation with a fine granularity to provide just-ergh
are known, the spectral resources in the EON are sufficidrandwidth to customer traffic demands. Hence, compared with
to serve all the requests, and the mutual crosstalk levelstbe traditional fixed-grid wavelength-division multipieg net-
security requirements of the lightpath pairs are also knowworks, EON can significantly improve the utilization effio@y
With all the aforementioned information, DSA tries to act@ie of spectrum resources. Note that, since the channel spacing
efficient spectrum assignment that can not only use guaE©Ns becomes much narrower than that in WDM networks,
bands with various sizes to adapt to the mutual crosstdle usage of guard-bands., the unused FS in between the
levels or security requirements of the lightpaths, but alspectrum assignments of two spectrally adjacent lighgath
minimize the maximum FS index used in the EON. Notbecomes more tricky. Specifically, if the guard-bands are no
that, to the best of our knowledge, the problem describ@doperly chosen, the physical impairments in fibers would
by DSA has never been studied theoretically in the litemtutinduce crosstalk between the lightpaths and thus theiitgual
Moreover, as we will explain in the paper, it is an extremelgf-transmission (QoT) would be deteriorated. Moreoveg, th
challenging problem. Hence, we explore the charactesistic crosstalk between two spectrally adjacent lightpaths can b
the DSA problem and provide some interesting and insightfehsily utilized to realize physical-layer attacks such ases-
theoretical results to support future studies in this dioec dropping and power jamming [6, 7, 10, 16], and mixed
The contributions of this work can be summarized as followmodulation attacks can also degrade the quality of high-bit

. To the best of our knowledge, this is the first work téate phase-modulated lightpaths with cross-phase maoiulat
formally study the DSA problem. We prove thgP- [17]. Therefore, we have to carefully choose the guard-band
hardness of the problem and analyze its inapproximi reduce the risk of physical-layer attacks, the degradaif
bility, and also formulate an integer linear programmin@©0T and the nonlinear penalty in EONs [6, 10, 17].

(ILP) model to solve it exactly. In order to realize spectrally efficient lightpath provisio

« We formally provide the upper and lower bounds of théd, the routing and spectrum assignment (RSA) problem
optimal solution of DSA and prove that they are tight. has already been intensively studied. In [4], RSA has been

« We propose a tWO_phase a|g0rithm to solve the DSerma”y defined along with the discussion on its CompleXIty
prob|em time-efficiently, and study its performance "and an ILP model and two time-efficient heuristics have been
various DSA situations, which are represented by diflesigned to solve the RSA problem. The authors of [13, 18]
ferent conflict graphs. Specifically, in a conflict graphljave considered to provision multicast requests in EONB wit
each vertex represents a lightpath while an edge signiff@§ multicast-capable routing, modulation-level, andcsjen
the guard-band requirement between two lightpaths. #$signment (RMSA). Moreover, the RSA/RMSA algorithms
its first phase, the algorithm generates an initial solytiofPr more sophisticated service provisioning schemes, ssch
which is proven to be the optimal solution in bipartitétdvance reservation [19], spectrum defragmentation 2],
conflict graphs and can guarantee an approximate rafitual network embedding [21], have also been investidate
of O(log|V]) in complete conflict graphs. The secondpefore. However, most of the previous studies on RSA as-
phase improves the initial solution with a random optisumed that the guard-bands use a constant size for all the
mization procedure, whose convergence performance dg#tpath pairs. Note that, the work in [9] had already rdgda
also analyzed mathematically. that the filtering characteristics of optical components ca

The rest of this paper is organized as follows. Section Wake the selectio_n of g_uard—band sizes e_xtremely sopmstic_

presents our motivation and the related work. In Section Iffd: Therefore, using a fixed guard-band size does not ceincid

we model the DSA problem and analyze its hardness. ngh the prac_:tice and _thus the problem of D_Si@e., the
upper and lower bounds of the optimal solution of DSA araPectrum assignment with various guard-band sizes shauld b
analyzed in Section IV. In Section V, we transform DSA”"IeSt'gated Im ﬁtlmely Irnannher. _ A e
into a permutation-based optimization problem (POP), and n genera,kt € wsve engt _assgnmglnt (_ ) pro zm.'ﬂ
with this transformation, the two-phase algorithm is deped WD_M networks (each request in WA problem is assigne wit

in Section VI. The performance of the two-phase algorith? f|xed-wavelen_gth frequency) and the spectrum aSS|gnm_ent
is theoretically analyzed in Section VII, and the numeric pA) problem in EONs (each request in SA problem is

results for performance evaluation are presented in Sect ssigned with a number of FS, the _detalls of distinction
VIII. Finally, Section IX summarizes the paper. etween the WA and SA are shown in Table I) can both

be studied by leveraging the graph coloring method [22] in
conflict graphs that are constructed based on the routimdtses
of lightpaths. Specifically, WA can be solved by finding the
With the recent advances in optical devices and transnmissichromatic number of the conflict graph [23, 24] while SA
techniques, the concept of EON has been proposed to maka be solved with the interval chromatic number [4, 25].
the resource management in the optical layer more flexib\evertheless, DSA differs from the classical graph colprin

II. MOTIVATION AND RELATED WORK



TABLE |

COMPARISON OF RELATED COLORING PROBLEMS crosstalk between their lightpaths or a guard-band has to be
_ _ _ inserted in between the lightpaths’ spectrum assignmaugs d
Classical | Fractional | Traditional | DSA " to certain customer-specified security reasons. Note tnat,
Coloring [22] Coloring SA [4] (this . . . . .
(e.g, WA [23]) 26] work) weight is also assigned to each edge in the conflict graph to
Vertex One color A set of Asetof | Asetof  representthe actual required guard-band size. Figs. 2 and 3
Color colors colors colors _ Table Il show an illustrative example on how to construct the
Cocn(t)ig’l:ity NIA Noneed | Required | Required  nnfiict graph. There are four lightpaths with the inforroati
Color Disjoint Disjoint identical various _ in Table Il and their routing paths in a 4-node ring topology
Distance of positive positve s illustrated in Fig. 2. Then, we assume that the guard-band
@?fﬁcczgt integer | Integers  requirements for the lightpaths are shown in Fig. 3(a), eher

for simplicity, we use the number of common links in two
lightpaths’ routing paths as their guard-band requireiriéote

problem [22] in two aspects: 1) each vertex in the confli¢f@l, previous experimental investigation has suggested t
graph, which represents a lightpath, is assigned with a $8¢ crosstalk level between two spectrally adjacent ligtite

of contiguous colorsi., FS) according to the bandwidthiS positively correlated with the number of common links in
demand rather than only one color; and 2) the distance HBfir routing paths [9]. For instance, since the routinghpat
the color sets of two adjacent vertices is no longer one ekt £1, i-€, B-A-D, shares two common links with that éf

a positive integer, representing the guard-band requineme(C'B'A'D), the required guar_d-band size b_etvveen them would
which is not identical for all the vertex pairs. More specifig, b€ at least 2 FS. In the conflict graph in Fig. 3(a), the number
DSA is similar to the fractional coloring problem [26], withinside a cyclg |s_the bandwidth (_jemand in FS whllt_a the number
two differences: 1) contiguous colors should be assigned @8 @n edge indicates the required guard-band size. Based on
each vertex in DSA, while this is not the case for fractiond® conflict graph in Fig. 3(a), we can figure out that optimal
coloring; and 2) various distances between adjacent cetsr sSolution of DSA is that in Fig. 3(b), where the assigned FS to
should be kept in DSA while color sets only need to be disjoif@ch lightpath are marked with red braces.

in the latter one. For clarity, Table | provides the comparis
of the four coloring related problems that have been digmiss
above,i.e, the classical coloring, the fractional coloring, the

TABLE Il
INFORMATION ON LIGHTPATHS

traditional SA, and the DSA problem. We can see that DSA is | Bandwidth Demand | Route
apparently a new combinatorial optimization problem, \khic Eggﬂggg; 5 Eg EZAB'_i
has not yet been studied before. In the next section, we will RequestR; 3FS A-D-C-B
formally define the DSA problem. RequestRy 1FS C-B-A-D

I11. DISTANCE SPECTRUMASSIGNMENT (DSA) PROBLEM

In an EON, a set of FS is available in each optical
fiber to carry lightpaths. Hence, efficient spectrum assigmm
algorithms are needed to optimize the spectrum usages of
lightpaths under the spectrum contiguous and non-overigpp
constraints [2]. Meanwhile, in DSA, to address the crokstal
level and/or security requirement of each lightpath paie, w
need to choose a proper guard-band to insert.

A. Problem Description

For DSA, we consider the network planning problem in
which all the lightpath requests and their routing paths are
known, the spectral resources in the EON are sufficient f&: 2. Lightpaths in Table Il in a 4-node ring topology.
serve all the requests, and the mutual crosstalk levels or
security requirements of the lightpath pairs are also known
(i.e, the required guard-band sizes are given for all t
spectrally adjacent lightpath pairs). Then, DSA tries toiexe
efficient spectrum assignment that can not only accommodatéNote that, since we only consider the spectrum assignment
all the lightpath requests to satisfy all the constraints,dtlso problem in DSA, which is already a relatively complex prob-
minimize the maximum used FS index (MUFI) in the EON.lem as we will explain below, we assume that the routing and

To solve DSA, we construct a conflict graph based oguard-band information on the lightpaths are known and thus
the known information regarding the lightpaths. Specifical for each instance of DSA, the conflict graph has already been
we first use a vertex to represent each lightpath and assgmstructed. Therefore, from now on, we concentrate on how
a weight to it for its bandwidth demand in FS, and theto obtain the optimal spectrum assignments for the lighipat
we connect two vertices with an edge if there would bg.e. the optimal solution of DSA) based on a known conflict

}E DSA model and Integer Linear Program



routing path. Basically, since each lightpath is pre-rdute
and represented by a vertex in the conflict graph, this
constraint will always be satisfied automatically.

« Spectrum Contiguity Constraint: The FS assigned to
a vertex should be contiguous K", i.e, w,, can be
expressed agv?, v? + 1,...,v¢ — 1,v¢}, wherev?, v¢ €
Nt.

« Spectrum Set Distance ConstraintTo satisfy the guard-
band requirements, the distance between the FS sets
assigned to two spectrally adjacent lightpaths should be
large enough. Specifically, for each edge; € E, the

Fig. 3. Conflict graph for lightpaths in Fig. 2 and optimal DSalution. distance betweenv,, and w,,; in N+ should not be

smaller than the edge’s weight:

(a) Conflict graph (b) Optimal solution

graph, and consider various types of conflict graphs in our distancew,, , wy,; ) > dv,v,, Yoiv; € E, 3)

analysis. We first introduce the following notations for DSA

Necessary Notations: _

« G(V,E): The DSA conflict graph, wher¥ is the set of distancwy,, wy;) = Jnin (Is —t[=1).
vertices, and® is the set of the conflict edges. Y

« N*: The set of natural numbers for representing the FS The DSA problem isA/P-hard, which will be proven
indices in the spectrum domain, which starts from 1. formally in the next subsection. To solve DSA exactly, we

where,

« v v; € V represents théth lightpath request. f(_)rmulate an ILP model to obtain the optimal spectrum as-
« v¥: The integer weight signifies bandwidth demand cfignment scheme.
lightpathv;, in the number of contiguous FS. Decision Variables:
« w,,: The set of contiguous FS assignedito « x%: Integer variable to represent the valueudf
« 02 0P € N* is the start-index ofu,, . « z¢: Integer variable to represent the valueugt
« v v € N* is the end-index ofu,, « y: Integer variable to represent the upper bound:f
« e or v;v;: The edges € E connectingy; andwv;, which * 04,4, Boolean variable for each edgev; to represent
represents that the lightpaths @fandv; share common the order of:? andz?, i.e. if 27 > 2%, we haveo,,,, = 1,
link(s). For convenience, we also us@; to represent an ando,,,; = 0 otherwise.
edgee. Objective Function:
o d. (dy;,): The positive integer weight that represents the .
least guard-band size between lightpath&ndv;. Minimize y  (ILP-DSA), @)
« B: B € Nt is a reasonably large integer. s.t. Egs. (5)-(10)
For ease of discussion, we also Us¢V, £/, {v;’ }, {dy,, }) tO
represent a DSA graplie., making the weights of vertices 2 — a2 +1 =Y, Vo, € V %)
and edges explicit. Our objective is to minimize the MUFI in Ovivy + Ouyo; = 1, Yov; € E (6)
the EON. Note that, it is also possible that the conflict graph b
G is not a fully connected one.rl)n that case, we can partiﬂonIO T =Tyt dow; $1S B X0y, Vuiry € E (7)
in to a few connected components, solve the DSA problemin ¥ = i Vo, € V (8)
them, and then get the MUFI in all the components as the final 2¢ € N, 2% € NT, Yv; €V (9)
solution. Hence, we will ignore the cases of non-connected Ouyw, € {0,1} Yo, € E - (10)

conflict graph in our discussions. The DSA problem can then

be defined as C. Hardness and Inapproximability Analysis

Minimize max  (s) (DSA), ) To analyze the hardness of the DSA problem, we introduce
S€<,Uingvi> the Minimum Hamilton Path problem (MHP) [27], whose
] ) ) objective is to find a minimum Hamilton path in a weighted
wheres € NT is the index of a used FS. Meanwhile, Dsptomplete graph. MHP is stronglyP-hard [27].
should be subject to the following constraints: If the conflict graph of a DSA instance is complete, which
« Bandwidth Requirement Constraint: Each lightpath means every two vertices; and v; are directly connected.
should be assigned with enough FS to satisfy its bandence, the FS sets assigned to the lightpaths should be
width demand. In other words, the cardinality of FS sgjairwise disjoint. If the complete graph satisfies the glan
assigned to a vertex, € V should be equal to its weight: inequality,i.e., d,, + dugw; > doyoys V03,05, 05 € V, OWING
O\ €V @) to this inequality, any Hamilton path satisfies the spectsain
A distance constraint of DSA. Therefore, in this case, the DSA
o Spectrum Continuity Constraint: The FS assigned to problem is equivalent to the MHP problem. If the triangle
a lightpath should be the same on each fiber link in iteequality cannot be satisfied in the complete graph, then th

|wy, | = v



solution of DSA might be longer than a Hamilton path. This Then, we have Theorem 2.

is because the spectrum set distance constraint might not b&heorem 2:Unless NP C ZPP, no polynomial-time
satisfied by a Hamilton path. Precisely speaking, the distan, ¢, istic algorithmAPX for DSA can guarantesAPX(I)
between two vertices;,v; € V in a Hamilton path may be OPT(I)

smaller than the required spectrum distarigg, . Theorem 1 Within O([V|'=<) for all the instancesZ of DSA, where
indicates the hardness of DSA. APX(Z) denotes the MUFI obtained bAPX, OPT(Z)

Theorem 1:MHP <£! DSA denotes the optimal resulf}/| is the number of vertices in
Proof: To prove the\N'P-hardness of DSA, we just needZ ande > 0.
to prove: 1) any instanc& of MHP can be polynomial-time Proof: For an arbitrary grapli(V, £), we can reducé;
reduced to an instanc® of DSA, and 2) the solution of’ {0 aDSA instanc€ in polynomial time by setting the weights
can be converted to that @ in polynomial time. of all the vertices and edges as one. Here, we denote this re-
We getZ’ from T by giving the biggest edge weigfit duction asR, i.e., R(G) = Z. According to Theorem 4, which
to each vertex off as its weight and keeping the edgeswill be given in the next sectionDPT(R(G)) < 2x(G).
weights unchanged. Then, we halg,, +b+dy,; > dv,;,  Therefore, if we assume thatPX can ensure X E)
Yo, v;, v With this reduction, each vertex pair in a Hamilton OPT(I
path inZ’ should satisfy the spectrum set distance constrail@(|v|l—e) for an arbitrary DSA instancg, %
Hence, the solution df equals that o’ minus|V|-b, where . ) _ OPT(R(@))
|V'| is the number of vertices. For example, in Fig. 4, if wéZ&L‘)/(J(RgG\g")OUIdAbﬁ)Q’?]g?C?)J{ an arbitrary grapt. Hence,
set the weights of the four verticese(, vi, va, vs and vy) < < O(|V|*~¢) would be valid

S . X : 2x(G) OPT(R(@))
to 3, which is the biggest edge weight, the MHP instafice X)) :
becomes a DSA instanc€. The minimum Hamilton path for an arbitrary graptt:, which means thatlP X (R((7)) can

. : ) S uarantee a ratio withid(|V'|1=<) for x(G). This, however,
can .be obta_lned by solving the DSA m_stance, Wh'Ch_'Sf Sho"g%ntradicts with the inapproximability of(G). Thus, we get
in Fig. 4 with red color. The total weight of the minimum,, proof m
Hamilton path is 5, which is obtained by subtracting 12 from '
the solution ofZ’. Therefore, we prove that the DSA problem

IV. UPPER ANDLOWERBOUNDS OFDSA’'S OPTIMAL
SOLUTION

In this section, we analyze the upper and lower bounds
of DSAs optimal solution. For ease of discussion, we first
introduce some terminologies and definitions.

« C(G): The condensation graph of a DSA conflict graph
G(V,E,{v{"},{dy,v, }). For the conflict graph, the vertex
setV can be partitioned inty (G) independent sets. We

solved merge the vertices in the same set as a single super-
by vertex and assign the maximum weight of the vertices

Z in MHP

V1

3 3 polynomial time
each vertex weight =3

Us 3 V2

o in the set as the weight of the super-vertex. Then, each
3 3 o optimal solution for T’ super-vertex pair in the new graph might have multiple
polynomial time v A v L vy L3 v .
<—,MHP,=17.4x3=5 Dealnana R ez R /e ngeS. Ampng these edges, we only keep the one with t.he
% 3 v maximum index=17 biggest weight and remove the others. Finally, we obtain
vertex orer: UIUI%02 the condensation graph ©f.
o Vo(e): Set of the vertices i'(G) and |V | = x(O).
Fig. 4. Example on reducing MHP to DSA in polynomial time. o Ec(q)- Set of the edges i6’(G).
« v; andv;’: v; € V(e is the vertex with the-th biggest
is alsoN'P-hard. [ weight andv/* is its weight.
To analyze the inapproximability of DSA, we first introduce » w,, v;® andv;*: Their definitions are similar as those of
the inapproximability result on the chromatic numbgiG) Wy, v¢ andvd.
2 of a graphG(V, E). Given a polynomial-time algorithm « ¢ andd.: ¢; € Ec(q) is the edge with the-th biggest
A to compute the chromatic number of a gra@gh we use weight andd, is its weight.

A(G) to denote the chromatic number obtained Ay The » Maximal cquhew and Maximal clique setV: Given
inapproximability ofy (&) is given by the following statement: a graphG(V, E), we call a subgraph)(V,, Ey;) C

UnlessN'P Cc ZPP, no polynomial-time algorithnﬂ(tha)\t G(V, E) a clique wheny(Vy, Ey) is a complete graph.

- AG A clique (Vy, E,) is a maximal clique if and only if
tes the chromat ber 6f _ v> L q y
cc.)m.pu es the chromatic m_Jm er orean guarantee?@ there is no clique)’ C G andvy C /. We use¥(G) to

within O([V[*=<) for an arbitrary graplG, where|V'| is the denote the set of maximal cliques @& In the example
number of vertices irG ande > 0 [28]. in Fig. 5, there are three maximal cliques, v, ands,

and thus¥ (G) = as indicated in the figure.
1<P means a polynomial-time Turing reduction. (G) = {¥n, 9o, w?’,} . . 9
2The chromatic number is the minimum number of colors needatblor _TO StUd_y th_e feature of DSA's Optlmql solution, we start
G such that adjacent vertices do not share the same color [22]. with the bipartite graphs whose chromatic numgé) is 2.



in the same side of the bipartite graph are not adjacent, we ca
simply verify that the aforementioned spectrum assignment

is proper. Hence, we can see that the final MUFI equals
G(V,E): v3 m vrﬂaex {dv,u; + v +ui'}. Hence, we finish the proof. =

Corollary 1: If a DSA conflict graphG(V, E) is of such
topological structure as tree, even ring or grid, we have

lopt(G)| = manE{d'“i”j + v 4+ vf'}.
’U4 ViV
b e Proof: Since tree, even ring and grid are bipartite graphs,
the proof is trivial based on Theorem 3. ]

Based on the analysis above, we can see that the optimal
solution for a DSA conflict grapli with x(G) = 2 can be
obtained easily. Next, the question is how about the conflict
graph withy(G) > 3. Apparently, the analysis becomes more
difficult for a larger chromatic nhumber. But fortunately, we
can get the upper and lower bounds fopt(G)| by lever-

Then, we continue to investigate the connection between #Ang x(G) and the maximal cquu?]b We lljse MHRy) to
optimal solution andy(G) of a DSA conflict graph. Firstly, "ePresenta mlnllmuthaml ton p;‘t in aﬁ'qwe“lleP(ﬁ” .
we give an obvious fact, which is needed in later proofs. to represent its length, and® to denote the total weight o

Fact 1: Given a DSA conflict graplt(V, E), if there is a he Vertices i, ie, v = 5, .

w w . v";EVw . .
solution whose MUFI equalsmax (du,., + v’ +vj), then  Theorem 4:Given an arbitrary conflict grapi, the in-

U(G) : {¥1,%2, 93}

Fig. 5. Maximal cliguey> and maximal clique se¥ (G).

it is an optimal one. o equality in Eqg. (11) holds for the optimal solution of the DSA
Proof: Due to the spectrum set distance constraint, tHgoblem.
MUFI cannot be less thad,,,; + v}’ + vf’ for anyv;v; € E. ()1

Hence, if a solution reaches this lower bound, it is optinml.  ax IMHP()| 49} < Jopt(@)] < Z dos + Z o (11)
We useopt(G) to represent an optimal solution of a DSA *<*(¢
conflict graphG, and|opt(G)| to denote the numerical value

N x(G)—1
of the optimal solution,i.e, the optimal MUFI. A proper Proof. Firstly, we prove|opt(G)| < 35" de +

spectrum assignmenteans that we assign FS sets to the .y’ v/ To achieve this inequality, we just need to find
vertices under the four constraints of the DSA problem. proper spectrum assignments for all t(g? zertrces&(‘éﬁ)/, E)
X X

and the MUFI would not be blggerthanz der + Z .

Hence, we can first tredf(G) as a conﬂrct graph and find a
proper spectrum assignmeRt for C(G). Since each super-
vertex v; € V(o) represents an independent set(f(i.e.,
its weight is the maximum weight of the vertices in the
independent set ofr and edgev;v; € E¢(q) is the largest-
weighted edge between the independent sets represented by
v; and v7), we can utilize P* to find a proper spectrum
assignment forG by packing the vertices im; into the FS
setw,, (as shown in the example in Fig. 7). Therefore, if
' x(G)—1 x(G)
the MUFI of P* does not exceed Z de; + Z v, we
prove the inequality. Here, the solutldﬁ* can be obtained
with Algorithm 1.
In Algorithm 1, we start from an arbitrary vertex i6(G),
) . . ... e.g,v. ,andgetthe FS set,, by settlngv =1, v v;}“.
Theorem 3:If a DSA conflict graphG(V, E) is a bipartite We select the largest- werghted incident edge J‘e g, el =
graph (as shown in Fig. 6), wheté = (Vi, V3) with v; € V4, 2.9, cf
‘ : v;, v;,, and the corresponding adjacent vertgx is chosen
1 <i<|Vi]andu; € Vo, 1 < j < |Va|, we have|opt(G)| = ! . 2
w as the next vertex Then, we assign, by settingv,” =
max {dv;u; + 0" +uf'}. 4 " . A&t A in |
" “Proof: Based on Fact 1, we just need to find a propeﬁ L dey £ 1, v = Ui, + v, — L After that, we select
spectrum assignment for all the vertices G{V, E) whose © Iargest werghted incident edge df, to a vertex whose
P 9 ’ FS set has not been assigned. The same procedure is repeatec

MUFI equalsd,, , + v;" +uj’ for certain edgeJ u; € E. For : : . ; )
i ’ ntil all the vertice are a ned with FS sets, and
eachv; € Vi, we assign the FS sat,, with 1) =10 =v unti vertices inC'(G) ssig w sets

, i it terminates in — 1 steps.
For vertexu; € V,, we assign the FS setz , wrth = . X(G)* tep L
a @ by w i : The assignment’* satisfies all the constraints in DSA,
max {vf+dy,,,, +1} andu? = u?+u? —1. Because vertices

viu €B L U J 3T since we select the largest-weighted incident edge in éaph s

Fig. 6. Bipartite DSA graptG(V, E), V = (V1, V2).



Algorithm 1: Process GeP* In general, it is known that calculating the chromatic numbe

Input : C(G) of a graph is extremely difficult. Hence, we provide a more

Output: A proper spectrum assignmeRt: for C/(G) practical method to calculate the bounds. For a gr@plwe
1 P* have x(G) < A(G) + 1 according to the Brook's theorem
2 V/, + Random Select! ; % Let v/ be Current Vertex ~ [29], where A(G) is the maximum degree of/. With a
S ! ! DSA conflict graphG(V, E, {v;" }, {dy,, }), we sort the edges
4 VP« 1;“ and vertices inG in the descending order of their weights,
5 VI VI, respectively. To avoid confusion, we rename the sorted dge
6 P* — P*U[V2, VA and vertices by denoting theth largest-weighted edge as
7 mark V7, visited; e; and the vertex with the-th biggest weight asy, i.e,
& while C(G) still has unvisited verticedo de; 2 des,vi > 05 Vi < j,ef,ej € Byvj,vf € V. Then,
o | searchthe vertexv’ which is the farthest neighbour W€ have the following corollary. _ _

of V. among the unvisited vertices ifl(G); Corollary 2: If G(V, E,{v] },{dc:}) is a DSA conflict
10 | sete” as the edge linking’ and V; graph, we havéopt(G)| < Ag)d " A(GZ)HU_Sw
1 | Vi< '; % Letv’ be Next Vertex ’ == T
12 | Vo Proof: Based on the construction procedure GfG)
1b Ia . x(G)—-1 x(G)
13 VN Vcb +der +1; and the Brook's Theorem, we haved_ d. + > v/* <
14 Ve~ VR + V-1, S Bt
P* « P*U Vlb Via : x(G)—1 x(G) w A(G) A(G)+1 w .
iz VéeVJ(,'[]\“ w1 Yo odes+ Y v5 < Y des+ Y. v . Then, with
’ =1 =1 =1 =1

17 | mark V visited; Theorem 4, we can verify the proof. [ ]

In order to make a fast estimation for the bounds of the
DSA’s optimal solution, we can say that the MUFI would not
exceed the total weight oA (G) largest-weighted edges plus
the total weight ofA(G) + 1 largest-weighted vertices ify.
Hence,P* is a proper spectrum assignment, and the MUFI of Corollary 3: The two bounds obtained in Theorem 4 are

18 return P*

. x(G@)—-1 x(G) ” x(G@)—-1 x(@) o tight.
P equals z; dey + Z; LU Z; de; + z; v By Proof: x(G) and ¢ are vital for the two bounds. If
now, the inequality of the right side is proven. G(V,E) is a perfect graph®, then the two bounds can

Next, we prove the left side. As a maximal cliqueis a converge under certain conditions. For instance, bigartit
subgraph ofz, we have|opt(1))| < |opt(G)|. Hence, we just graphs are perfect graphs. For a bipartite graili, £), each
need to proveMHP(y)| + ™ < |opt(y)| for any «. If we 9(G) just contains one edge. As a result, the lower bound
assume thaP(y)) is an optimal proper spectrum assignmer]trenﬁ% {IMHP(¢)| + 4"} becomesvmax {dv,u; +v}° +uf'}.

. . iujEE
for ¢, the FS sets assigned to all the vertices would ki ihis case opt(G)| reaches this lower bound according to

mutually disjoint since) is a.complete subgraph. The distancgneorem 3. Moreover, wher(G) — 2, the upper bound
betwee.n any two FS sets (1)) \_Nould not be sm.aller than equalsmax(d.)+ max {v¥ +u¥}. Whenv? andu? are the

the weight of the edge connecting the two vertices. Hence, ~ e€E Vg,V ’ ) Y

the value of solutionP(y)) would not be smaller than the Weights of two adjacent largest-weighted vertices apg,
length of the minimum Hamilton path plus the total weight off /S0 the maximum weight of the edges, the upper bound
all the verticesj.e, [MHP()| + ¢ < |P(e)| = |opt(v)]. equals the lower bound. Hence, the two bounds are tigit.

Consequently, we finish the proof. u V. ORDERED DISTANCE SPECTRUMASSIGNMENT

(ODSA)
the proper spectrum assignment P* for C(G) In order to solve DSA efficiently, we simplify it to an
o n o o ordered DSA (ODSA) problem, which we will prove that

iy iy ix(G)-1 ix(G)

can be solved optimally in polynomial time. Basically, ODSA
bears the same objective and constraints of DSA, and besides
it imposes a newertex order constraint as follows. The
vertices should be ordered such that the start-FS indices of
vertices are in the ascending ordee,,

Oi = (Viy, Vigy vy Vi) I’U,Z, >l Vi >k (12)

(%)

"
€ x(G)-1

vertices of G
seperated into

x(G) parts
With the ordered vertices, ODSA becomes a much easier
problem than DSA. We formulate the ILP model for ODSA:

Part 1 Part 2 Part x(G) —1 Part x(G) Minimize y  (ILP-ODSA),
s.t. Eqgs. (14)-(18)

(13)

Fig. 7. A proper spectrum assignment 10(G). 3A graph G is perfect if x(G) = max lv(G)] [22].



z§ — xﬁ-’j +1=v;, V1<j<|V] (14) respectively. The other constralnts are the sameﬂfbr and
o —al >dy, ., +1, Yj> kv, €E (15) v, exceptfor Eq. (16)ie, v >l ando? > v}
b"p
xb > %v Vi>k (16) As vy > u , the lower bound tc;tFJ+1 denotedt as(j+1
S Vi< i<V 17 would not be Iarger than that oTO" denoted ag;,. Since
Y =T . <j<Vi 17 e can gev} ,, = (1 with the greedy strategy dﬂgorithm
af e N* 2 e NF, V1i<j<|V| (18) 2 we haveuf+1 > (P > (1 = . By induction, we

Then, we design a polynomial-time algorithm (O-L) to solv@ave v, > v} , wherek is within [j, |V'[]. Therefore, we

ODSA optimally, and its procedure is shownAigorithm2. ~Prove that the MUFI of ODSA underpt arrangement would
not be smaller than that is provided by Seq, which causes the

- contradiction. Then, we finish the proof. ]
Algorithm 2: Procedure of O-L Corollary 4: A DSA problem can be solved optimally with
Input : A DSA graphG(V, E, {v}"}, {du,v, }), and a Algorithm 2 under certain vertex order.
vertex orderO; = (vi, , Viy, -, Vi, ) Proof: If opt is an optimal solution for a DSA problem,
Output: An assignment strategy for the star-index there has to be an ordé,,; among the start-FS indices of
Seq= {v} : 1 <j <[V} and the MUFI opt. Therefore, the optimal solution for ODSA with vertex
1 vﬁ’l +~ 1 orderO,,; equals that of the DSA problem. With Theorem 5,
2 v vy we prove thatAlgorithm 2 can get the optimal solution for the
3 Seq<— vZ’l, DSA problem under the ordep,;. u
4542 Now, we can see that it would be vital to determine the
s while j <|V| do optimal vertex order. Note that, in the analysis above, we
6 S1 <_Vk<]v X b {vtk +dULkU7 +1}; actually have already transformed the DSA problem into
e the permutation-based optimization problem (POP). POP is
! 52 =) = a classical combinational optimization [30]: L&tbe a set of
8 | v maX{ShS?}; n elements,¥. be the permutation space that consistsnbf
U ;< U v - L permutations ovelS, and f(-) be an estimation function for
10 | Seqe Sequ (o} ' h any o € ¥. The objective of POP is to optimizg(-) over X.
11 j—J+1 .
= o* = argmin f(o). (29)
12 return Seq and max (v, oER

==Vl For the DSA problemS ' is vertex seV, ¥ is the whole/V|!

vertex orders and we can utiliZdgorithm 2 as our estimation

The main idea ofAlgorithm 2 is to assign the FS sets tofunction. In the next section, we will get an initial vertesder
vertices in sequence according to the pre-defined order swgkh a heuristic algorithm and then improve the vertex order
that v takes the smallest possible value to satisfy all thwith the nested partitions method (NPM) [31].
constraints of ODSA. We begin with vertex,, and set its
start-FS index? as 1 and its end-FS index according to itsVI. TIME-EFFICIENT APPROXIMATION ALGORITHM FOR
bandwidth demand,e., v¢, = v*. Then,v? is added to the DSA
spectrum assignment scheme Seq. For each vejtewe use  For any DSA problem, if the vertex ordei.d, in the
s1 to denote the smallest index permitting to keep enouglicending order of the start-FS index) in the optimal sofuti
guard-bands from the adjacent vertices:gfthat have already is known beforehand, then it can be transformed into an ODSA
been assigned FS sets, and sge= v, | to satisfy the order problem and solved optimally bilgorithm 2 in polynomial
constraint. Then, the start-index of; is max{si,s2}, and time. Inspired by this, we develop a two-phase algorithm to
the end-index equalmax{si, sz} + v — 1. The procedure solve DSA. Specifically, in the first phase, we use a greedy
terminates when all the vertices have been assigned FS s&igitegy to generate an initial vertex order, and then thersk

The time complexity ofAlgorithm 2 is O(| £1). phase utilizes NPM to improve the initial order.
Theorem 5: Algorithn®2 obtains an optimal FS assignment
scheme for ODSA. A. First Phase Greedy Algorithm (FPGA)

Proof: Firstly, it is easy to verify that the spectrum . w
assignment scheme in Seq is a feasible solution for ODS é'tzotrhg alstglcsgilt'g( g;?(;)er?%thE t{hve }foi{lngfﬁ}) vrvoeCe:gSre
since all the constraints are satisfied. Then, we prove that % gp

e

indicates an optimal ODSA solution by contradiction. If S gftfgr W?Ni‘:f:]a: frrc;rg dangtr;gte&é < bV’ ?”:ngnf the wFS
; : opt . ; L V) = = v,
is not optimal,opt = {vfj : 1 < j < |V|} would be the vi 9 y gy.€. v; Vi =Y

optimal start-index arrangement for ODSA anﬂt #+ Seq. gﬂcii?g{zllet’ovﬁ:e;ay?;%btgistoer?m;de:&;o;sgr O_f ;er;[g:;s
Let ;7 be the index of the first vertex such thé’t # v, ng ssig SEels. fakesv; as

port y first element. Then, we find the vertex from the vertices
A ”%f 1 = j = 2). Then, with the greedy strategy,that are not yet in0; to ensure that? is the minimum to

we havev v - FOTJ' +1, let 777} and ;11 be the gatisfy the constraints of DSA for all'the vertices that are i

feasible reglon fovb andu L InILP-ODSA (cf, Eqg. (13)), O,. We insert this; into O; and assign the corresponding FS



set to it. The same procedure is repeated until all the eertidncludes POP. Specifically, we consider the following pewbl
have been included int®;. After |[V| while-loops,|V| vertex 0" — argmin £(6) (20)
orders{O1, 0., ..., Oy} have been generated and we choose T ATINTS ’
the one that results in the minimum MUFI as our initial orde{ynere© is the entire solution space arfd-) : © — R is the
Algorithm 3 gives the procedure of the proposed First Phaggjective function. Firstly, NPM gives gartitioning scheméo
Greedy Algorithm (FPGA). IrLines1-3, starting fromj = 1, partition® systematically, and then it uses a iterative approach
we initialize O; as{) and uses; to record the current MUFI 14 optimizef(-). In each iteration, NPM operates on a solution
used inO;, whose initial value is 0. Then, iines 4-20, gpacey, which is a subset o® from the partitioning scheme
with the [V'| while loops, we generatgl’| vertex orders. AS anq is named athe most promisingegion. Then, according to
mentioned abovel,ines 5-8 letv; be added intd;, assign  the partitioning scheme, we divide the most promising regio
the FS set to it, and updatg ass; = v’. In the for-loop , into A7 (7)) disjoint subregions, and we ca\, surrounding
coveringLines9-20, we organize the remaining vertices @  yegion Note that, if the partition scheme obtains a region, then
one by one using the aforementioned greedy strategy. ¥inall,e say the region isalid, and if a valid regions is formed by
we select the vertex order that results in the minimum MUFbartitioning a valid regiom, thene is asubregiorof i andr is
We can see that there are three cascading loopsgarithm  c5)jeq thesuperregiorof o. Thereforey is divided intoM ()
3, and thus its time complex ©(|V|*- A), where|V| is the  igjoint subregions. Next, each of thé (1) subregions and the
number of vertices and is the maximum degree af. surrounding region are sampled byemdom sampling scheme
and we use the objective function to evaluate the samples
Algorithm 3: Procedure of FPGA and calculate theromising indexfor each subregion. If the
Input : G(V, B, {0}, {duro, }) promising index of a subregion among tM(n) subrt_eglons
Output: An initial vertex order and an initial MUFI of 7 turns to be the best one, we set this subregion as the
151 most promising region in the next iteration. If the surroungd
2 0; « {; % initialize vertex orde, region is proven to be the best, the methgd_ \bﬂlckt_rackto
3 s; < 0; % record the MUFI ofO, another region to be the next most promising regiemy.(a

4 while j < |V| do region thgt contains the prgvious most promising region or
5 0; « 0; U{v;}; a suprgglon o.f® that contalns_ .the best sample). The_ most
6 U? 1 promising region is then partitioned and sampled with the
; 07 procedure discussed above.
I quj; For DSA, the entire solution spad@ is the |V|! vertex
0 f(;r i :]2 V| do orders and thg object.iv_e functionAgtgori_thm 2. In_the second
10 v+ 0; % v is the next vertex entering; phase o_f.the. tme-efﬂment approxmapon algontr_m_w fqr DSA
1 b « B: % B is large enough the .p.ar.tltlonmg spheme is as fqllows. we first d|V|&E|n_to
- o 0 n disjoint subregions by choosing, vz, ..., vy as the first
L vertex in the ordered vertices, and then each of [hé
13 for k=1:|V|do . R _ . !
14 if vx ¢ O; then subregions is divided intgV| — 1 subreglons by sele_ctmg
15 Wb max (v +d +1); the second vertex and so on so forth. Fig. 8 provides an
ko vueo mpumert b Y ’ illustrative example on the partitioning scheme for DSAeTh
16 if v2 <o’ then random sampling scheme samples the surrounding region and
17 L v vg; V0 0l vV vl each subregion uniformly and the most promising region will
backtrack to the least supperregion if the promising index
18 0, < 0; U{v}; in the surrounding region is the best. The vertex or@ér
19 v v ¥ — 1 obtained byAlgorithm3 is the original most promising region.
20 sj < max{s;,v"};
21 | jJj+1,05+0; 55 < 0;

22 O* = argmin s;, s* = argmin sj;
0, s
1<5< v 1<5i< v

After getting the initial vertex orde©* and initial MUFI
value s*, we utilize NPM to improve the initial solution. In

felool T - T ] foood T T1 ool T T7]

the next subsection, we will provide the details of NPM and

our two-phase algorithm.

B. Two-phase Algorithm

Fig. 8. Example on the partitioning scheme for DSA.

VIl. ALGORITHM ANALYSIS

The NPM method was proposed in [31] to leverage a generallin this section, we analyze the performance of the two-phase
random method to solve global optimization problems, whicklgorithm, which is composited blgorithm 3 (i.e,, an ap-
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proximation algorithm) and NPM.¢., a random optimization & < V|, we asserb;, ., is the nearest neighbor of, among
algorithm). ForAlgorithm 3, as DSA is intractable accordingthose vertices that are not yet ;. After we have included
to Theorem 2, we focus the analysis on some specific graipie firstk vertices inO;, the innermost for-loop ofllgorithm3
types,e.g, complete graphs and bipartite graphs. For NPMgarches thék +1)-th vertexi.e., v, . ,, whose FS start-index
we provide two of its key properties.,e., the convergence is the smallest among those unordered vertices. Wevuse
performance and the number of expected iterations. denote the nearest neighbor @f among all the unordered
vertices. Since the triangle inequality is held, the spauotr

A. Approximate Ratio of FPGA in Special Graphs Sft diitar;ce constraint far;, ,, only pon;]es frorlrlek, i.e.,d_
= + dvjkvjk+1 + 1. As dvjw IS the smallest guar

1) .Complete Graph yvith Triangle Inequalityif a DSA b];;a sizew? = v +d, . + 1 reaches the minimum.
conflict graph G:(V, E) is a complete graph, the FS SetSyorafore Uising the greeds strategy, we canwget, = v
assigned to the vertices must be pairwise disjoint. Hencg, | e proof is verified ! -

to satisfy the bandwidth requirement and spectrum corttigui In fact, we select the minimum one frof©y, Os, ..., O}

;of?xs;(rjag;trsait:ae”tmlggr:);t?de;%sEtsiins S'g[‘ue%fntSh: ﬁ:}? after |V| while-loops inAlgorithm 3. Let|FPGA(G)| be the
cardinaity, 0enoted as - = 2, v, . ~ONSEqUuenty, g ;) output value andopt(G)| be the optimal value for a
the optimization objective in this case is equivalent to imin SA conflict araphG. Then. according to Lemma 1 and the
mize the sizes of the guard-band between any two spectra[ﬂ . graphts. ' » 9 w
adjacent FS sets under the spectrum set distance constraiﬁr{aIySIS above|FPGA(G)| — V* and |opt(G)| — V' are

An algorithm, calledNearest NeighbofNN) to solve MHP, | e length of the Hamilton path produced Bigorithm 4 and
can guarantee an approximate ratio for complete confli
graphs that satisfy the triangle inequaliigorithm 4 shows
the procedure of NN.

(J:¥[HP(G)| respectively. Then, we get the following theorem.
Theorem 6:1f G(V, E,{v;’},{d.,»,; }) is @ complete DSA
conflict graph that satisfies the triangle inequality, the ap
pl)roximate ratio ofAlgorithm 3 would not be larger than

5 (Mogs (V)T +1).4
Proof: According to the analysis above, we have

Algorithm 4: Procedure of NN

Input : G(V, E),v;,{du,v; } CYrw
Output: A Hamilton pathP |F|§p(j(AG()C|:)_| V}“/ < %(ﬂogz(IVI)Prl). As|FPGA(G)| >
1 set Curren_t\_/ert(.ex<— V45 |[FPGA(G)| |[FPGA(G)| — V'
2 mark v; visited; lopt(G)], we have AT AT
s while G still has unvisited verticedo 1 lopt(@)] lopt(@)] -
4 | find vertexv which is the nearest neighbor to 5(DOg2(|V|ﬂ +1). u
CurrentVertex among all the unvisited verticesGn 2) Bipartite Graphs: Then, we consider the case in which
5 CurrentVertex— v; the DSA conflict graph is a bipartite graph. Before the anglys
6 mark CurrentVertex visited; we introduce the following definition.
7 | P+ PU{v}h Definition 1: For a bipartite grapiG(Vi, V), V; and Vs,
s return P are the two parts of the vertices ii. We call its vertex

labeling is goodif the vertices are labeled in the way that
the vertices inV; are labeled as the firgfi;| ones,i.e,

Let [NN(G)| denote the length of the Hamilton pathfy,, v,,...,vy, |} = Vi, and apparently, the remaining vertices
produced byAlgorithm4 and|A H P(G)| denote the length of are all inV; and labeled AV vy 41, Vs 125 s Vv |} = Vo
the minimum Hamilton path. Then according to [27, 32], weor a bipartite grapld(V1, 2), the time needed to get a good
have the approximate rat'r%iwvﬂ < l(Dog2(|V|)]+1). vertex labeling isO(|E|).
For a complete DSA co|nflig};(r§p>)|ﬁ(VZE {v¥},{dv;v; }) Theorem 7:If a .DSA. conflict graph
that satisfies the triangle inequality, we za,paigoltritr{m3vqtng GV, B, {v;"}, {du.v, }) IS a bipartite graph and we label its

. . 7 i . vertices in a good wayAlgorithm 3 can get the optimal
Note that, the while-loop i\lgorithm 3 obtains a vertex order :
%?Iunon for DSA.

Oj in the j-th iteration. There is a proper spectrum assignme Proof: Let V; and V, be the two parts of a bipartite

induced byO;, which in fact represents a Hamilton path inv. According toAlgorithm 3 and Theorem 3, we just need

G. Then, we. have Lemma L. . to prove the MUFI obtained with orded; in Algorithm 3
Lemma 1:If the conflict graphG is a complete graph that | d w w1 After has entered)
satisfies the triangular inequality, the Hamilton path icetti €942 Svfﬁﬁg‘E{ vy 0+ 0 v1 has L
by the orderO; from Algorithm 3 is equivalent to the result sinceV; is an independent seflgorithm 3 includes vertices
from Algorithm 4 with input v;. Vg, ..., Uy, | in Oy in sequence and? = 1,1 < i < [V4]. Also,

Proof: We assume that the orded; obtained in the becausel; is an independent sety = — max  {vf +
YvjeVi,viv;€EE

j-th while—loop. of Algorithm 3 is (vjl,vjz,:..,vj7L), where oo, + 14, Vil + 1 < i < |V|. Therefore, considering
v, = v;. At first we have|O;| = 1, which means that "’

only v;, is included in orderO;. Then, with the greed
Y U J 9 y “4Actually, for this special casd)ouble Minimum Spanning Tredgorithm

strategy ofAlgorithm 3, v;, is the nearest neighbor t0;,  (33] of MHP can be utilized for DSA, which can guarantee a pragimation
in G. Supposing this inference is true whan,| = k, where ratio with the similar proof of Theorem 6.
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the four constraints of DSA, we get the MUFI @); as Theorem 9:Let o(0) be the initial vertex order provided

max {dy,»; + v}’ + v} B by Algorithm 3. The expected number of iterations for our
viv €F two-phase algorithm to get the optimal solution for DSA is
1

B. Convergence Performance and Expected Number of IteraE[Y] = 1 + Z S ERTTE N
tions of Two-phase Algorithm nesh 1 Toope < Ty

1) Convergence Performanc&or Algorithm3, we assume Po) [Ty < min{T5(0), 15, }] .
that the partitioning scheme has been defined an# léenote =5 PalTo) < Tl - Poo) T, < min{To0), Ty}
the set of all the valid regions, whes€0) is the initial region (22)
state,i.e, the initial vertex order that is obtained, aa@k)
X is the region state of the-th iteration. Then{o(k)}%2, is
the iteration sequence and the region state + 1) depends
on the estimated values of the promising index in the state
o(k), which is related with the sampling points. Thereforeg[y,| — fR NP
{o(k)}?2, is a Markov chain with state spacE, and we 5Ty < min{To (), Trop.J] 7€ s
have Theorem 8 according to [31]. PalTo(0) < Tl - Po(0)[Toope < min{To o), T}l 23)

Theorem 8: € X is an absorbing state of the Markovgy supstituting Eq. (23) in Eq. (21), we finish the proofm
chain{o(k)}72,, if and only if 7 is the optimal vertex order |n each iteration, we at most takesampling points in the,
for DSA. valid regions. Each sampling and calculating of the promgjsi

Proof: Firstly, we prove the “if* part and use Algorithmindex will use the Procedure O-L whose time complexity
2 as the object functiorf(-) to evaluate the promising indeXjs O(|E|). Therefore, the expected time complexity for the
of a region. If we assume thatis the optimal vertex order for second phase i©(|V |- |E| - E(Y)).
DSA, then the transition probability of staying inis: P,, = Although we have Theorem 9, calculating the expected
P[f(n) < f(©\n)] = 1. Hencey is an absorbing state. Next,number is still tough. Hence, we leverage the approximation
we prove the reverse. Supposifigs an absorbing state andstochastic model in [34]. Specifically, in each iteratidrthie
f does not represent the Optlmal order for DSA, the tranSitiqﬂiomising index of the Surrounding region is the best, we
probability of not staying ir¢ is: Pee\¢ = P[f(§) > f(O\)] backtrack to the entire solution spaée Let P, be the the
> P[randomly select a pointt in ©\¢ and f(0) < f(£)] > 0. probability of the two-phase algorithm moving towards the
This inequality reveals that is a transient state, which leadscorrect directionj.e., backtracking if the optimal solution is
to a contradiction. Therefore, we finish the proof. B not in the current most promising region and selecting the

According to Theorem 8, the Markov chain will eventuallytorrect subregion otherwise. Then, we have Theorem 10.
converge to an optimal vertex order and stay there foreverTheorem 10:Assuming the above approximation stochastic
Since the transient states are finite, we can see that theoMarlhodel is held, the expected number of iterations for twosgha
chain would reach an optimal vertex order within finite timealgorithm to find the optimal solution for DSA is

2) Expected Number of Iterationsthe expected number

Proof: As given in [31], the expected number of visits to
the transient states is
1

7777 e 217
Py(To,p: < Ty

of iterations to reach the optimal vertex order directly &ofs E(Y]) = L(l — w)

the time-efficiency of our two-phase algorithm. To evaluate By n!

the expected numb_er of iterations, we need to introduce 7-2 (n—d)! (1— Py 1 Py — P}

several random variables and symbols [34]. We useto  — ( o pnd )+ (P”‘l 1B ), (24)
represent the state spaeg,; to represent the optimal solution d=0 ' 0 0

regions,i.e., the optimal vertex order. We defing; = {n € wheren = |V| is the number of vertices ify.

I\{oopt}oopt € n}, i.e, the valid regions that include,,; Proof: Theorem 10 can be proved using the similar
andXs = {n € X\{oopt}|oopt ¢ 0}, i.e, the valid regions that procedure that proves Theorem 2 in [34]. [ |

do not includer,,:. Then, we havel = {o,,: }UX1 UL, We With the approximate expected number, we can set the

useY, to denote the number of visits of a state >’ and use stopping criteria to terminate the two-phase algorithmesnd

T, to represent its hitting time (the first time of visiting thiscertain probability significance. We utilize the expectenina

state). Besides, we denote the probability of an event under in Eq. (24) and apply the Markov inequalitf(|Y| >

constraint that the chain starts in a state X asP[evenf. ¢) < LE(|Y[)* to get the upper bound of the number of
According to [34], the number of iterations for the Markovterations for finding the optimal solution for DSA.

chain to reach an absorbing stafeequals the number of itera-

tions to visit all the transient states plus one.(the transition VIIl. N UMERICAL RESULTS
to the absorbing state), which 1§ =1 + GZE Yy + GZE Y. In this section, we evaluate the performance of our proposed
n 1 n

As X is finite, we get the expected number of iterations astwo-phase algorithm. As DSA is a new spectrum assignment
model, there is no existing heuristic algorithm for compani.

EY]=1+ Y EN]+ > E[Y (21) Hence, we applied Pure Random Algorithm (PRA) as the
neX: nED, benchmark algorithm, in which we randomly selected a vertex
order at each iteration and calculate the optimal solution
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for this vertex order by usind\lgorithm 2. The ILP model
for DSA was solved by MATLAB2015a with the CPLEX
toolbox and the approximate solutions from our two-phase
algorithm and PRA were both obtained with MATLAB2015a
under the same number of iterations. We Binindependent
simulations on each conflict graph and average the results to
ensure sufficient statistical accuracy. We set the proipaboil
moving in the correct direction aB, = 0.5 in Eqg. (24) and
the significance probability &0%. All the simulations run on

a computer with 3.2 GHz Intel(R) Core(TM) i5-4690S CPU
and 8 GBytes RAM.

(a) 14-vertex (b) 15-vertex (c) 16-vertex

(d) 17-vertex (e) 18-vertex (f) 19-vertex

. . Fig. 9. Six random graphs with 14-19 vertices.
A. Simulation Setup

We perform simulations in different scenarios:

« Random graphs We use the NetworkX package [35]
to generate random graphs, in which each vertex pair
is directly connected with a probability éf£5, as DSA
conflict graphs. The weights of vertices and edges are ran-
domly chosen within1, |[V|]. Specifically, Fig. 9 shows
the six random graphs that are used in the simulations.
They have |V| € [14,19]. Hence, we assessed the
performance oflgorithm 3 and our two-phase algorithm
under the pure random conditions.

« Complete graphs with random weights To reveal the
effectiveness of the two-phase algorithm, we also use
complete conflict graphs WithV| c [14, 19], whose Fig. 10. Six random graphs with 14 vertices and 15-90 edges.
vertex and edge weights were also randomly chosen
within [1, |V]], as the DSA conflict graphs.

(a) 15 edges (b) 30 edges (c) 45 edges

(d) 60 edges (e) 75 edges (f) 90 edges

B. Simulation Results

Edge number. By intuition, the more edges or the largefwo-phase algorithm are closer to the optimal one obtained
the biggest guard-band size that a conflict graph has, fii@m FPGA, as shown in Fig. 11. Another notable fact is that

bigger its MUFI is. Therefore, we apply the two-phaséhe results of Fig. 9(b) are better than those in Fig. 9(a). We
algorithm on six random conflict graphs, each of whicRbserve that there is a vertex with degree one in the topology
has 14 vertices and the number of edges ranges witiihFig. 9(b), which is different from Fig. 9(a). This fact irgs

{15, 30, 45, 60, 75, 90} as shown in Fig. 10. The vertejfat the topology does have impact on the final MUFI.

and edge weights are still chosen randomly as above.
TABLE Il

14—n.ode NSF_NI_ET .and_ 28-node US_ Bacl_<b0neTo NUMERICAL RESULTS FORFIG. 9

mimic the realistic situations, we run simulations on two

practical EON topologies, i.e., the 14-node NSFNET and FFE%-A9 9(561)2 9(;3)8 l(g)4 ﬂ)s (37 (lf)60
the 28-node US Backbone [13]. Here, each lightpath FPGA 754 753 774 965 101 111

request is randomly generated and we use the shortest  Two-phase 72.7 725 755 91.0 994 110.

path to route it. The guard-band requirement between ILP-DSA 716 701 736 875 945 105

two lightpaths is computed as the number of common

links on their routing paths. Following these principles, 2) Random Complete Graph3able IV presents the aver-
DSA conflict graphs are constructed and we applied tle®e MUFI obtained in the six random complete graphs. The
two-phase algorithm to solve the DSA problems. relative gaps with a 95% confidence interval are shown in Fig.
12. We can observe the similar trends as discussed above for
random conflict graphs. Moreover, we can see that both the
relative gaps and the confidence intervals in complete graph
1) Random GraphsTable Ill presents the average MUFlare smaller than those in random graphs for two-phase, FPGA

computed by PRA, FPGA, two-phase and ILP-DSA, respeand PRA. This can be interpreted as follows. In complete
tively for the six random topologies in Fig. 9. The relativggraphs, the FS set assigned to each vertex should be mutually
gaps (errors-optimal ratios) with a 95% confidence intervdlsjoint, which makes the optimal MUFI (computed by the
are shown in Fig. 11. In Table Ill, both the initial solutiondLP) bigger. While in random graphs, the FS sets assigned
from FPGA and the improved solutions from the two-phade certain vertices could be overlapped, and hence the aptim
algorithm are better than those from PRA under the samelue of MUFI would be smaller. However, the overlapped FS
number of iterations. We also observe that the solutions arets make it more difficult for the three algorithms to optieni
truly improved in the second phase, since the MUFI from thbe spectrum assignment, which leads to smaller relatips ga
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Fig. 11. Relative gaps of Table Il by Two-phase, FPGA and PRA
Fig. 13. Numerical results for Edge number scenario.

and confidence intervals in complete graphs.
practical EON topologies. In Table V, we can see that ILP-

TABLE IV DSA can only get the optimal solution when the number of
NUMERICAL RESULTS FORRANDOM COMPLETE GRAPHS lightpaths is within50. Meanwhile, our two-phase algorithm
Fverices 14 15 6 17 18 19 can obtain almost the same solutions as ILP-DSA.
PRA 169.0 1941 2387 2591 2833 297.3 Based on all these observations, we can conclude that our

FPGA 1450 1647 1974 2165 2344 2461  proposed two-phase algorithm can approximate the optimal
Two-phase 143.6 163.6 196.6 2133 2313 2415

ILP-DSA 1424 1605 1911 207.6 2237 231  solution for DSA well.

IX. CONCLUSIONS

30% | [ Two-phase In this paper, we studied the DSA problem in EONs. By
[ FPGA 7 reducing MHP and graph coloring to DSA, we have proven
7ZIPRA B & that DSA isNP-hard and inapproximable. Then, we analyzed
' and provided the upper and lower bounds for the optimal

g solutions of DSA, and proved that they are tight. Next, by

2 159 leveraging a vertex order and developing a polynomial-time

§ algorithm {.e., Algorithm 2), we transformed DSA into POP.
10% Then, we developed a two-phase algorithm to solve DSA

time-efficiently. For the first phase.€., Algorithm 3) in the
algorithm, we theoretically proved that its time complgxit
ﬂ ﬁ is O(|V[]?> - A), and it can get the optimal solution for
" bipartite conflict graphs and guarantee an approximate rati
Number of vertices of O(log(|V])) for complete conflict graphs with triangle
inequality. The second phase utilized a random optimiratio
Fig. 12. Relative gaps of Table IV by Two-phase, FPGA and PRA. algorithm, and we applied theoretical analysis to obtai th
expected number of iterations for getting the optimal sofut
3) Edge number:Fig. 13 plots the simulation results onThe numerical simulation results demonstrated that our two
six random graphs in Fig. 10. The results on MUFI from twophase algorithm can find the near-optimal solutions for DSA
phase algorithm and ILP-DSA are marked as purple and bligevarious conflict graphs.
bars respectively, and the approximate ratio is plottedenh r
line. It can be seen that the approximate ratio of the twaspha
algorithm increases with the number of edges in the conflict
graph. The preliminary version of this paper has been published as
These results coincided well with the intuitive observatiod pPost-deadline paper [36] in the proceedings of the 21st Eu-
that the more edges or the bigger edge weights that a grdprean Conference on Networks and Optical Communications
has, the more spectrum resources that DSA would consurffdOC 2016).
The feature also inspires us that a good routing algorithm
should be used to reduce the common links and thus further REFERENCES
improve the quality of the results for DSA in EONSs. ) . o ] ]
4) 14-vertex NSFNET and the 28-vertex US Backbone:” 1,118 PeCrumeronnt mseaati Seeic s ot e
We evaluate the performance of two-phase algorithm with two  Mag, vol. 47, pp. 66-73, Nov. 2009.
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