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Abstract: This paper demonstrates Deep-RMSA, a deep reinforcermamnimhg based self-learning

RMSA agent that can learn successful policies from dynaratevark operations while realizing

cognitive and autonomous RMSA in EONs.
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1. Introduction
By setting up variable-sized super-channels with seriespettrally continuous fine-grained frequency slots (FS’s)
elastic optical networking (EON) offers unprecedentedilfliéity for spectrum management in the optical layer. Rout-
ing, modulation and spectrum assignment (RMSA) is one ofuhdamental mechanisms for provisioning in EONSs.
A number of RMSA schemes based on either heuristic algorithsign [1] or theoretical analysis [2] have been de-
veloped in the past years. However, all these schemes agppty RMSA policies and hence are unable to adapt to the
complicated and dynamic EON conditiors., time-varying demand and spectrum state.

Google recently reported a human-level control paradigrarbeging deep reinforcement learning [3]. Specifically,
they parameterized a convolution neural network (also knasQ-network) that can learn successful polici€s (
values) from high-dimensional sensory data.(images). Inspired by this work, we propose Deep-RMSA, gdee
reinforcement learning based self-learning RMSA agenteédize autonomous and cognitive RMSA for EONs. We
structure a deef-network consisting of multiple convolution and fully caeuted layers to learn the best RMSA
policies regarding different EON statesg(., connectivity and spectrum utilization) and lightpathuests. The training
of the Q-network takes advantage of two key ideas from [3, deployment of target action-val@@network and
experience replay, for avoiding the divergence of pararaeie test Deep-RMSA with a six-node EON topology and
the simulation results verify its superiority over the HaseRMSA algorithm.

2. Deep-RMSA Design

Deep-RMSA successively learns the optimal RMSA policy daseits percep-

tion of network statese(g., topology, spectrum utilization and in-service light- Target
paths) and the feedback from the environmeset, (network operations) using | Action-vaiue
deep reinforcement learning. Fig. 1 illustrates the schierofDeep-RMSA. In | SNetwerk (@) )
particular, upon receiving a lightpath requeR(s, d, b) (sandd are source and Generate] ©¢
destination noded is the demanded data rZe), thge RMSA engine fetches tﬁm @

-

@|s

current network state and calls tenetwork to compute the estimated action Action-value —_— Q
value {.e., Q) for each RMSA solution ofR. Conceptually, action value is de-| Mo (@ | 185@ [r = o5, L0
fined as the cumulative future reward that Deep-RMSA canexehiby taking

action (RMSA solution) at stateS, i.e., Fig. 1. Schematic of Deep-RMSA.

Q(SLRA M) =i+ yrip1 + VPrso+- -, 1)

wherer; is the immediate reward; is a discount factor imposed on future rewards ang ® (A|S LR) defines
the RMSA policy that Deep-RMSA applies. Apparently, takR§ISA solutions with largeQ-values grants higher
total reward. In this work, @-greedy policy is used, with which the RMSA engine takes tohs corresponding to
the largesQ-values with a probability + €, and random provisioning strategy is adopted otherwisée Mwat, the
random policy enables Deep-RMSA to explore new solutiorth ghat it can avoid being trapped in local optima
during the learning process. After the RMSA engine perfogiihe RMSA operation, an immediate rewardan be
observed. Specifically; = 1 if LRis successfully provisioned, amg= 0 otherwise. Therr; together with the target
generated by the targ€network (estimation of future reward) form the label thatised for training th@-network
afterwardsj.e.,, Deep-RMSA adjusts the parameters of @aetwork to make its output closer to the label (more
accurate approximation of the re@ivalue). Finally, the targe-network is periodically updated with tl@-network

to incorporate the up to date learned experience. The niguofi Deep-RMSA will be elaborated on in Section 2.2.
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Fig. 2. Structure of dee@-network. Conv.: Convolution, F.C.: Fully Connected.
2.1. Q-Network

Different from traditionalQ-learning methods that keep record of eé8A) entry and update it®-value using linear
approximations, we refer to [3] and parameterize an apprated action-value functioQ(S, LR, A|&') using the deep
neural network shown in Fig. 1(b).€., Q-network, wherei' is its parameter set at st€p Basically, theQ-network

takess, d andb of LR and the spectrum utilization on all the fiber links as the trgoud outputs th€-value of each
RMSA solution. In this work, we calculate-shortest paths for each request, with each RMSA solutioresponding
to the use of one of th& candidate paths. Note that, impairment-aware modulatomdt adaption and first-fit
spectrum assignment scheme [4] are applied throughoublaliens for simplifying the model. Lelh%j denote the

state of thej-th FS on linki (hﬁj equates to 1 if the FS is available and 0 otherwise). The ﬁ;&rlincbrporates, d
andb and performs a convolution operation (Conv. 1) to transfbﬂ:p‘into hfj ,i.e,

)
=1 (o [hsdp] +p) . @

whered) is the set of parameterp; is the imposed bias anf{-) is the activation function. Heres,andd take the
one-hot formj.e., anl-bit binary array [ is the number of nodes in the EON) with only one bit being etmal Layer
2 is a standard convolution layer (Conv. 2) employing migtgonvolution kernels, which each (kermglcalculates,

h3; = (@on 2+ Bon) Vi -

Since these convolution kernels perceive the state of esmagtrum locatior) across all the links, we expect each of
them to extract the state of a path segment from the EON tgpol@yer 2 is followed by another one or more layers
applying Conv. 2, which further combine the features olgdim layer 2, potentially enabling the extraction of the
states of longer end-to-end paths. As the FS’s allocatedightpath in EONs should be continuous, we next deploy
a few Conv. 3 layers to make tlq@network perceive the states of continuous FS-blocks. ipalty, each kerneh in
Conv. 3 layers merges every two adjacent nodes from thequsVayerx into one node according to,

T . .
hf‘lj,:lj. = (0'3(+l,n : |:hi>(,2j717 hlx2]:| + Bx+l,n> VL (4)

Again, such hierarchical feature extraction mechanisraqt@lly enables th@-network to learn the states of variable-
sized FS-blocks on different paths. Finally, we deploy twilyfconnected layers to calculate tRevalues using the
features learned by convolution layers.

2.2. Training

Deep-RMSA iteratively adjusts the parameters of @aieetwork to minimize the estimation error over action value
Recall thatQ(S,LR,A|@') estimates th®-value of taking RMSA solutior for LR at stateS. Specifically, according
to Eq. 1, we have,

QSLRAJ@) =fi+yE |max{Q(S, LR, Ala ) } |, ®)

wherer{ is the estimation of immediate reward, is the evolved network state after the RMSA operationlfBy
andQ(S, LR, A'|&t ) is the target action-valu@-network specifically for estimating the future reward. elénspired

by [3], we deployQ(S, LR, A'|&' ) which is derived fromQ(S, LR, A|é)) but is less frequently updated to avoid the
oscillation or divergence of the parameters during trgn@ince the information of future requests is unavailable,
averageQ-value incorporating all the possibilities of the upcomieguesLLR is used to estimate the future reward.



By replacingr{ with the observed;, we apparently obtain a more accurate estimation offthvalue. Therefore, the
training of Q(S LR, A|®@') aims to minimize the loss function defined as,

2
(@) = (r+ v [ max( QS LR At )} | - QS LR A ) ©)

More specifically, we take advantage of the idea of expedemplay from [3], store the RMSA experience
(SLRA, 1+ yE [maxy {Q(S,LR,A'|&' )}]) in the replay memory and periodically perform batch trajnby re-
trieving randomly batches of RMSA experience from the mgméxrperience reply breaks the correlations between
samples and therefore can potentially reduce the variditbe training [3]. MeanwhiIeQ(S’, LR, A'|@! ) is replaced
with Q(S LR A|@') every few training steps.

3. Evaluation and Discussion

We evaluate the performance of Deep-RMSA with the six-no@& Eopology shown in Fig. 3(a). Each link in the
EON accommodates 64 FS’s. The dégpetwork consists of 2 Conv. 2 layers (each with 16 convotukernels), 3
Conv. 3 layers (each with 1 convolution kernel) and 2 fullycected layerg128 50]). We calculatk = 5 candidate
paths for eack-d pair,i.e., the number of nodes in the output layer ig/ande are set to be @9 and 01 respectively.
We generate dynamic lightpath requests according to tresBoprocess, withandd randomly selected artwevenly
distributed within[25,100 Gb/s. An episode of RMSA operation terminates when everyrggQests are handled (to
avoid infinite future reward). We invoke a batch training @i®n when every 3 episodes elapse and the tapget
network is updated every 2 training operations. We use tbetestt path routing and first-fit spectrum assignment
algorithm (SP-FF) as the baseline algorithm. Fig. 3(b) shthve performance evolution of Deep-RMSA for various
numbers ofLRs trained. We can observe significant reduction in requestkifig probability from Deep-RMSA,
which indicates that Deep-RMSA is able to capture successédures from the EON state and learn the correct
RMSA policies. Comparison between Deep-RMSA (trained 6@k LRs) and SP-FF in Fig. 3(c) demonstrates that
Deep-RMSA significantly outperforms the baseline alganitf#.1x blocking reduction in average). Note that, when
evaluating the performance of Deep-RMSA, we rely only onpbicies learned by the agent and set 0 to disable
the exploration mechanism.

We should also note that as a very preliminary work of apgjydeep reinforcement learning to solve networking
problems, the proposed Deep-RMSA design still confrontsrabrer of challenges remaining to be addressed. Firstly,
the design of th&-network and the parameters used for the training procesdeaefined, such that Deep-RMSA
can extract better representations of network states aneoge to optimal policies quickly even for larger topokesyi
Meanwhile, different from general learning tasks that caexactly modeled as Markov decision processes, the actions
and rewards of Deep-RMSA are also determined by the recéiRRsdn addition to the network states. Therefore,
prediction of futureLRs is required, and the additional complexity induced as a&lthe potential oscillation of the
learned parameters need to be carefully handled.
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Fig. 3. (a) Six-node EON topology (link length in km) and (lo)-results on request blocking probability: (b) performan
evolution of Deep-RMSA during training and (¢) comparisatviieen Deep-RMSA (trained with 6KQRs) and SP-FF.

4, Conclusion

In this work, we demonstrated a deep reinforcement leatmaisgd self-learning RMSA agent that can learn successful
policies from dynamic network operations and realize ctigmand autonomous RMSA in EONs.
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