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Abstract—It is known that by combining network virtualiza-
tion with software-defined network (SDN), people can realize
virtual SDNs (vSDNs) for enhanced programmability, adaptivity
and cost-effectiveness. Meanwhile, protocol-oblivious forwarding
(POF) can overcome the protocol-dependent restriction of Open-
Flow and provide a more generic abstraction model of the for-
warding elements in SDNs to realize a protocol-independent data
plane. In this work, we design a flow-table virtualization module,
i.e., PVFlow, to realize resource-efficient flow-table virtualization
for POF-based vSDNs. To fully explore the flexibility of POF
and support arbitrary matching fields in vSDNs’ flow-tables,
we propose the idea of “BigMatch”, which enables different
flow-tables in vSDNs to share a matching stage in a substrate
POF switch efficiently. We implement PVFlow in a POF-based
network virtualization hypervisor (NVH) system, i.e., PVX, and
verify its effectiveness on improving the efficiency of flow-table
virtualization with experiments.

Index Terms—Software-defined networking (SDN), Protocol-
oblivious forwarding (POF), Network virtualization hypervisor,
Flow-table virtualization.

[. INTRODUCTION

The fast development of Internet has generated tremendous
new applications with various quality-of-service (QoS) de-
mands. To adapt to them, Internet service providers (ISPs)
need a comprehensive solution, which should not only prop-
erly address the ossification of current Internet infrastructure
[1] but also provide sufficient network programmability to
satisfy the unique requirements of applications. The dilemma
of ossified Internet infrastructure can be resolved with network
virtualization [2, 3], which builds multiple virtual networks
(VNs) over a shared substrate network (SN) and isolates
resources for the VN to let them customize their own network
environments. However, the traditional network virtualization
approaches, e.g., VLAN, VXLAN, and GRE, only facilitate
resource virtualization and isolation, but cannot provide the
tenants a powerful network control and management (NC&M)
scheme that can be used to satisfy their unique QoS require-
ments. The centralized NC&M scheme in software-defined
network (SDN) [4] can fulfill this missing puzzle piece. When
network virtualization meets SDN to realize virtual SDNs
(vSDNs), the advantages such as enhanced programmability
and adaptivity can be realized [5, 6].

The network virtualization hypervisor (NVH) is a key
element for building vSDNs. Specifically, similar to the IT
virtualization hypervisor that allocates physical IT resources
to virtual machines, an NVH slices the network resources
(e.g., bandwidth and flow-tables) in an SN for vSDNs [5].

Previously, to build OpenFlow-based vSDNs, people have
developed software systems such as FlowVisor [7] and Open-
VirteX (OVX) [8]. Nevertheless, it is known that the protocol-
dependent nature of OpenFlow restricts the programmability of
network virtualization systems [9-11]. Specifically, an Open-
Flow switch has to know the protocol headers to parse and
match to the fields in them, which could cause compatibility
issues if a VSDN needs to support protocols that have not
been standardized in the OpenFlow specifications. Therefore,
a protocol-independent NVH would be desired to realize the
future-proof feature such that vSDNs can be programmed to
support new protocols seamlessly and timely [11].

Recently, the idea of protocol-independent forwarding (PIF)
[12] has been put forward by the Open Networking Founda-
tion (ONF), and for its practice, the programming protocol-
independent packet processors (P4) [10] and the protocol-
oblivious forwarding (POF) [13] are the pioneers. POF pro-
vides a more generic abstraction model of the forwarding
elements, which locates the data fields in packets through
<offset, length> tuples without a protocol parser. Here, offset
denotes the start bit-location of a field in a packet while length
represents its length in bits. Nevertheless, due to the protocol-
independent nature of POF, realizing an NVH based on it is
more challenging, especially for the flow-table virtualization
that isolates the storage resources in substrate switches to store
the virtual flow-tables of each vSDN. This is because POF
switches literally support arbitrary matching fields in their
flow-tables instead of few predefined ones, and thus efficiently
organizing the flow-tables of vSDNs in substrate switches
would not be an easy task to do.

In this work, we extend the POF-based NVH (i.e., PVX) that
we developed in [11] and design a flow-table virtualization
module, namely, PVFlow, to realize resource-efficient flow-
table virtualization for POF-based vSDNs. The rest of the
paper is organized as follows. Section II briefly introduces
the background of POF-based flow-table virtualization. The
system design and operation principle of PVFlow are described
in Section III. Then, we present the implementation of PVFlow
in Section IV, and the experimental evaluation is discussed in
Section V. Finally, Section VI summarizes the paper.

I1I. BACKGROUND AND MOTIVATIONS

Different from the OpenFlow switches that operate based
on pre-defined matching fields, POF switches enable the
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network operator to customize the matching fields in flow-
tables arbitrarily by using the <offset, length> tuples [9, 14]
and a generic forwarding instruction set (i.e. POF-FIS) [15].
Specifically, a controller can create a flow-table in a POF
switch by specifying the table ID, table size, and matching
fields with the TableMod message defined in the POF protocol.
For instance, Fig. 1 gives an example on how the flow-tables
are organized in a POF switch. Here, the POF switch has IV
matching stages, each of which includes a match table that
is stored in the ternary content addressable memory (TCAM)
and an instruction block in the normal memory. Specifically,
each entry in the match table corresponds to the matching
field(s) of an entry in a flow-table, and it contains a pointer
to an entry in the corresponding instruction block. Then, for
a packet, if a positive match is obtained by a match table
entry, the switch will invoke the corresponding instruction(s)
in the instruction block to process it. Note that, since TCAM is
usually expensive and power hungry [16], one should always
try to save its usage to improve the cost-effectiveness of the
network system, which is also our objective in this work.
The switch in Fig. 1 is programmed to realize two packet
processing pipelines, i.e., for IPv4/UDP and multi-protocol
label switching (MPLS) packets, respectively. Each pipeline
consists of two matching stages, whose match tables are all
defined with the <offset, length> tuples. Stage 0 is to match to
the EtherType field in a packet’s Ethernet header, which locates
from the 96-th bit with a length of 16 bits and tells the switch
whether the Layer-3 protocol is IPv4 (i.e., with EtherType as
020800) or MPLS (i.e., with EtherType as 0x8847). Then, if
the switch finds that a packet is an IPv4 one, it processes the
packet with the match table in Stage 1, which specifies the IP
destination address and UDP port to be matched with and the
corresponding instructions for a positive match. Specifically,
the switch decreases the packet’s T7L field (i.e., <176 bits,
8 bits>) by 1 and outputs it through Port 1. Otherwise, the
packet processing procedure for MPLS packets is in Stage 2.
Note that, to realize vSDNs using different protocols over
an SN, each substrate POF switch may need to be programmed
to support multiple protocols simultaneously as shown in Fig.
1. As the flow-tables of virtual POF switches can contain
arbitrary matching fields with various lengths, the flow-table
virtualization to organize them in the TCAM of substrate
switches is essential and can greatly affect the efficiency of
vSDN slicing. Previously, in [11], we developed a POF-based
NVH, namely, PVX, which explored the programmability of
POF-FIS to realize protocol-independent vSDNs. However,

Example on the organization of flow-tables in a POF switch.

we did not try to optimize the flow-table virtualization in it.
Specifically, PVX allocates the whole TCAM of a matching
stage to a virtual switch for creating a flow-table for it, even
though the virtual switch’s flow-table will not contain many
flow-entries, i.e., the matching stages in a substrate switch
could not be shared by different virtual flow-tables. This is
because the matching fields of different flow-tables would
usually not be the same as those in Stage 0 in Fig. 1, due to the
flexibility of supporting arbitrary matching fields. Therefore,
it is not possible to merge them in one matching stage without
proper preprocessing, i.e., the flow-tables for IPv4/UDP and
MPLS packets in Fig. 1 need to occupy two matching stages.
Apparently, this type of flow-table virtualization can waste a
lot of TCAM in substrate switches.
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Fig. 2. Principle of forming BigMatches with PVFlow.

ITI. OPERATION PRINCIPLE
A. Transforming Matching Fields into BigMatches

To address the aforementioned issue, we design a new soft-
ware module, namely, PVFlow, to greatly improve the resource
efficiency of the flow-table virtualization in PVX. First of all,
we propose an approach to unify the flow-tables that contain
arbitrary matching fields with various lengths, and enable them
to share the TCAM of a matching stage in a substrate switch.
Specifically, we transform the matching field(s) in each flow-
table into a generic matching field, namely, “BigMatch”. For
example, for a flow-table that contains two matching fields as
<240 bits, 32 bits> and <288 bits, 16 bits>, we combine
them into a BigMatch as <240 bits, 64 bits> (i.e., starting
from the 240-th bit and covering 64 bits), and set the bits
for <272 bits, 16 bits> as wildcards since they do not need
to be matched according to the two original matching fields.
Meanwhile, the TCAM in substrate switches is divided into
matching stages with fixed-length entries too. Then, each
BigMatch can be stored as an entry in a matching stage.



Note that, in most cases, the length of a BigMatch would
not be exactly the same as that of an entry in the matching
stage. This issue can be resolved as follows. If the length of
the BigMatch is shorter, we stuff more wildcards at the end of
it to make them in equal length. For example, we need to stuff
32 wildcard bits at the end of the aforementioned BigMatch
<240 bits, 64 bits> to store it in a 96-bit matching stage
entry. Otherwise, if the BigMatch is too long for a matching
stage entry, we can divide it into multiple fragments to store in
multiple stages. Here, to save TCAM, if the start bit-locations
of the original matching fields are separated by a length that
is comparable to the length of a matching stage entry, we
have the option of not combining them into one BigMatch but
transforming each of them into a BigMatch.

Fig. 2 explains the principle of forming BigMatches intu-
itively. Here, we consider two virtual switches (i.e., vSWs 1
and 2), and both of them contain two flow-tables. Since the
lengths of the BigMatches obtained from the first flow-tables
in vSWs 1 and 2 are shorter than that of a matching stage
entry in the substrate switch, the BigMatches (i.e., with certain
stuffing wildcards) can both be stored in Stage 0. Then, for
Table 1 in vSW 1, we assume that it consists of three matching
fields and generate two BigMatches out of them. The first two
matching fields are converted into a BigMatch whose length
is longer than a matching stage entry, and thus the BigMatch
is divided and stored in Stages 1 and 2. Then, since the start
bit-locations of the first and third matching fields in 7able 1
are separated by a length that is comparable to the length of
a matching stage entry, we just generate a BigMatch for the
third flow-table and store it in Stage N. For Table 1 in vSW
2, the same procedure is applied, and since the length of the
BigMatch generated for it is the same as that of a matching
stage entry, it is stored in Stage 1.

B. Allocating TCAM Space to Store BigMatches

When a substrate switch connects to PVX, PVFlow initial-
izes all the matching stages in it with TableMod messages.
Then, during the run-time of a vSDN, its controller can create
or scale-out the flow-tables based on BigMatches in its virtual
switches also with 7ableMod messages. Specifically, PVFlow
calculates the required TCAM space based on the information
in such a message (e.g., flow-table size, number of matching
fields in each flow-entry, and total length of each flow-entry)
and the current matching stage usage of the vSDN, and then
allocates a block of matching stage with enough space for the
vSDN exclusively in the specified substrate switch. The block
of matching stage is allocated based on the first-fit scenario.

C. Translating Flow-tables for vSDNs

After a virtual flow-table has been allocated to one or more
matching stages in a substrate switch, the controller of the
vSDN can install flow-entries in it. Fig. 3 gives an example
on installation and translation of the flow-entries. Here, we
assume that Stage N is a matching stage whose match table
is shared by three tenants (i.e., three vSDNs). To operate
the three vSDNs, PVFlow extracts all the matching fields’
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Fig. 3. Example of flow-entry translation.

values in each FlowMod message from a vSDN controller,
and translates them into the value(s) of the corresponding
BigMatch(es). Specifically, as shown in Fig. 3, the flow-
entry from 7enant 1’s controller tries to match to the IPv4
destination address and UDP port of a packet, and PVFlow
translates the flow-entry into a 96-bit BigMatch to store in the
space allocated to Tenant 1 in the substrate switch. Then, a
FlowMod message that can convey the BigMatch is built by
PVFlow and sent to the substrate switch. For the flow-entries
from other tenants’ controllers, the same translation procedure
is applied, and since the BigMatches have the same length and
thus can be stored in the same matching stage, the TCAM
space in the substrate switch can be utilized more wisely.
Meanwhile, we hope to point out that for the BigMatches
stored in the same matching stage for different vSDNSs, their
start bit-locations do not need to be the same. Actually, to
point to the right start bit-location for each BigMatch, PVFlow
inserts a MovePacketOffset instruction in the instruction block
for it, which can correctly adjust the offset for the BigMatch.

All these operations are realized with the instructions in
POF-FIS and made transparent to the tenants. Therefore, our
design of PVFlow does not require any modifications in either
the POF controller or the POF switch, which means that
it works smoothly with the existing POF controller [9] and
switches (i.e., both the open-source software-based switches
[17] and the commercial hardware switches [9]).

IV. SYSTEM IMPLEMENTATION

We implement PVFlow in the PVX developed in our
previous work [11]. Fig. 4 shows the functional modules of
PVFlow, which are explained as follows.

o Table Store: It maintains all the mapping between
the tenants’ virtual flow-tables and the match tables in
matching stages, and also records the availability of the
matching stages in substrate switches” TCAM.

o Table Initializer: It interacts with substrate switches to
create the instances for their matching stages in the Table
Store, and initializes the management and BigMatch-
based flow-tables in the substrate switches.



o Table Dispatcher: It receives the table-creating tasks
parsed from the TableMod messages from a tenant’s
controller. Upon receiving such a task, it extracts the
information regarding the virtual flow-table and tries to
allocate a block of matching stage in the substrate switch.
If the virtual flow-table can be created successfully, it
records the mapping result in the Table Store. Otherwise,
it returns a failure message to the tenant’s controller.

o Flow Translator: It processes the FlowMod messages
from the vSDN controllers and checks the Table Store to
translate them into the FlowMod messages that can be
understood by the substrate switches.
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Fig. 4. Functional modules in PVFlow.

V. PERFORMANCE EVALUATION
A. Flow-Table Virtualization Efficiency

Since the major advantage of PVFlow over the existing
flow-table virtualization scheme in PVX is that it can signif-
icantly improve the TCAM utilization efficiency in substrate
switches, we first design an experiment to compare the two
approaches on the numbers of provisioned virtual flow-tables
on a substrate switch. In our experimental testbed, the POF
controller is implemented by extending the POX platform
[9] and running it on a Linux server, while each substrate
POF switch is realized by running our self-developed software
switch on a high-performance Linux server (i.e., Lenovo
RD540 equipped with 2.0 GHz 6-core Intel Xeon E5-2620
CPU and 64 GB memory). Note that, since there is no on-the-
shelf hardware POF switch at this moment, we have to use
the software switches to emulate the behaviors of hardware
switches. Specifically, to emulate the limited TCAM on each
hardware switch, we apply an upper-bound on the size of the
memory that can be used to store virtual flow-tables.

In the experiments, the maximum number of flow-entries
that can be stored in each substrate switch is set as 2000.
Then, we use PVX to create a vSDN slice, let the controller of
the vSDN to install various flow-tables in its virtual switches,
and compare PVX with PVFlow (PVX w/ PVFlow) with the
one without it (PVX w/o PVFlow). Specifically, the controller
encapsulates the virtual flow-table requests in TableMod mes-
sages, chooses the matching fields in each flow-entry of a
virtual flow-table randomly from the combinations of common
protocol-fields (e.g., Layer-2, Layer-2/MPLS, Layer-3, and
Layer-3/Layer-4 fields), and set the required number of flow-
entries in each virtual flow-table as uniformly distributed in

[50,1000]. In each experiment, the controller will generate
150 virtual flow-table requests and send them to PVX, and
we record how many of them can be provisioned successfully.
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Fig. 5. Results on number of provisioned virtual flow-tables.

Fig. 5 shows the experimental results on the number of
provisioned virtual flow-tables in a substrate switch. Here, we
consider the situations in which each substrate switch contains
different numbers of matching stages. Apparently, PVX w/
PVFlow can effectively improve the flow-table virtualization
efficiency as it can provision much more virtual flow-tables
with the same substrate resources. Without PVFlow, PVX
can only allocate a whole matching stage in the substrate
switch to a virtual flow-table, and thus the maximum number
of provisioned virtual flow-tables is equal to the number
of matching stages in each substrate switch. This, however,
would waste a lot of TCAM resources in substrate switches
as a virtual flow-table may not occupy the whole space of
a matching stage. On the other hand, PVFlow ensures that
each matching stage can be shared efficiently by different
virtual flow-tables (i.e., from one or multiple vSDNs). These
experimental results verify the effectiveness of PVFlow on
improving the efficiency of flow-table virtualization.

B. Processing Latency

Note that, compared with the one w/o PVFlow, PVX w/
PVFlow incorporates more operations to process the flow-table
virtualization, which would result in more overhead and longer
processing latency. To make sure that the additional processing
latency would not cause significant performance degradation
on packet processing in the network virtualization system, we
design an experiment to measure the control channel latency
from a vSDN controller to a substrate switch. Specifically, we
extend the well-know SDN controller performance test-tool
cbench to let it support the POF protocol. The experiments
use the same network testbed to measure the average control
channel latency for three NVHs, namely, vSDN slicing with
1) OpenFlow-based OpenVirteX (OVX) [8], 2) PVX w/o
PVFlow, and 3) PVX w/ PVFlow.

We make sure that the vSDN’s controller runs no other ap-
plications except for installing FlowMod messages according
to the PacketIn messages from its virtual switches. Specifically,
cbench sends PacketIn messages to the controller through the
NVH and measures the round-trip time (RTT) from sending
out a PacketIn to receiving a FlowMod. The substrate switches
are connected according to the Internet2 NDDI topology [18]
that consists of 11 nodes, and to measure the worst case
scenario, we assume that the topology of each vSDN is exactly



the same as that of the SN, i.e., each substrate switch supports
a virtual switch of each vSDN. We set the length of a flow-
entry in a matching stage of a substrate switch as 128 bits.
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Fig. 6 shows the experimental results on the control channel
latency introduced by OVX, PVX w/o PVFlow and PVX w/
PVFlow. It can be seen that compared with OVX and the
one w/o PVFlow, PVX w/ PVFlow only introduce ~0.05 and
~(0.1millisecond additional processing latency per message.
These results suggest that the processing overhead caused
by PVFlow is reasonable and would not cause significant
performance degradation on the NVH system.

Finally, we measure the provisioning time in PVX w/
PVFlow, which is defined as the average latency from when the
NVH receives a TableMod message from a vSDN controller to
when the flow-table mapping scheme has been installed in the
Table Store of PVFlow. Specifically, each experiment lets the
controller generate a batch of TubleMod messages for creating
virtual flow-tables, each of which askes for a flow-table with
100 flow-entries. Fig. 7 illustrates the experimental results for
substrate switches with different lengths of matching stages. It
can be seen that the provision time decreases with the width
of a matching stage in substrate switches. This is because,
using matching stages whose flow-entry is too short would
lead to frequent flow-table fragmentation when converting the
original flow-entries to BigMatches, which introduces addi-
tional operation complexity. Therefore, in terms of provision
time, setting the width of each matching stage longer would
be beneficial. However, a longer width of each matching stage
would waste certain TCAM resources in substrate switches,
since most of the flow-entries of the vSDNs would normally
not be very long. Hence, in practical POF-based NVH systems,
we have a tradeoff between the provisioning time and flow-
table virtualization efficiency to adjust.

VI. CONCLUSION

In this paper, we designed a flow-table virtualization mod-
ule, i.e., PVFlow, to realize resource-efficient flow-table virtu-
alization for POF-based vSDNs. Specifically, to support arbi-
trary matching fields in vSDNs’ flow-tables, we proposed the
idea of “BigMatch”, which enables different virtual flow-tables
to share a matching stage in a substrate switch efficiently.
We implemented the proposed PVFlow in a POF-based NVH
system, namely, PVX, and conducted experiments to verify
its effectiveness on improving the efficiency of flow-table

virtualization. The experimental results also confirmed the
additional overhead introduced by PVFlow is very small and
PVX with it can provision virtual flow-tables quickly.
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Fig. 7. Results on virtual flow-table provisioning time.
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