
ADMM-based Distributed Algorithm for Emergency
Backup in Time-Variant Inter-DC Networks

Xiaokang Xie, Qing Ling, Ping Lu, Zuqing Zhu†
School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email: {zqzhu}@ieee.org

Abstract—This paper considers the emergency backup in an
inter-datacenter (inter-DC) network whose topology is time-
variant due to the progress of a disaster. We first transform the
dynamic backup into a static flow problem through building a
variable time-expanded network (V-TEN). Then, by considering
both data utility and resource cost, we formulate an optimization
to maximize the backup profit and leverage the alternating
direction method of multipliers (ADMM) to design a time-
efficient and distributed algorithm. Simulation results show that
our ADMM-based algorithm outperforms several existing ones.
Index Terms—Emergency backup, Inter-datacenter network,

Time-expanded network (TEN), Time-variant network, Alternat-
ing direction method of multipliers (ADMM).

I. INTRODUCTION
It is known that to adapt to the exponential growth of data-

intensive applications, enterprises such as Google, Microsoft
and Amazon have built inter-datacenter (inter-DC) networks
to connect geographically distributed DCs [1]. Since a DC
usually stores huge amounts of data and provides services to
numerous users, its breakdown can cause massive data losses
and service outages to thousands or even millions of people.
However, a natural disaster can easily wipe multiple DCs out.
For instance, the Sichuan earthquake in 2008 had destroyed
tens of DCs in China and caused severe data losses [2], while
Hurricane Sandy had brought down several DCs in the east
coast of the United States for days. Hence, inter-DC networks
are especially vulnerable to natural disasters and thus they
have to use data backups. Such data backups are mainly in
two types, i.e., the regular backup that is performed during
normal operation for improving data redundancy [3], and the
emergency backup that is conducted in response to upcoming
disasters for evacuating important data out [4].
For regular backup, previous studies have considered how

to optimize the resource allocation for minimizing costs in
[5] and tried to shorten the overall backup duration (i.e., the
backup time window) in [6]. However, since regular backup
is performed when an inter-DC network is in normal state,
it does not need to consider the time constraint and hence
involves a simpler optimization than emergency backup. As
an emergency backup is triggered to evacuate important data
out before an upcoming disaster can impact the DC(s), it is
time-constrained. Moreover, it is known that data itself may
have different values [7] and different disasters can impose
different levels of damages to DCs [4]. Hence, emergency
backup should not simply treat all the data in endangered
DCs equally as in the inter-DC data transfers of a specific

cloud computing application [8, 9]. With this consideration,
our previous work [10] prioritized the endangered data to
maximize the data owners’ utilities and leveraged the time-
expanded network (TEN) approach to develop a distributed
algorithm for optimizing emergency backup.
However, the approach in [10] still bears three issues.

Firstly, The network model therein ignores the costs of re-
sources used for buffering and transferring the data in inter-
DC networks. Secondly, it uses the dual decomposition based
sub-gradient method [11] to solve the optimization, which
could have a relatively slow convergence speed. Lastly and
most importantly, it does not consider the change of network
topology during an emergency backup and assumes that the
upcoming disaster would impact all the endangered DCs
simultaneously. Apparently, this assumption is not true for all
the disasters, for example, a hurricane or a typhoon would
impact the inter-DC network in a time-variant manner [4].
In this paper, we extend our work in [10] to address the

aforementioned issues. Specifically, we consider the emergen-
cy backup in an inter-DC network whose topology is time-
variant and construct a variable TEN (V-TEN) to transform
the dynamic backup into a static flow problem. Then, with
the considerations of both data utility and resource cost, we
formulate an optimization problem that maximizes the backup
profit. Finally, we leverage the alternating direction method
of multipliers (ADMM) [12] to develop a time-efficient and
distributed algorithm to solve the problem. The major contri-
butions of this work are as follow.

• To the best of our knowledge, this work is the first to
study emergency backup in an inter-DC network, whose
topology is time-variant.

• We propose an ADMM-based distributed algorithm for
emergency backup, which is robust and time-efficient.

The rest of the paper is organized as follows. Section II
describes the network model. In Section III, we formulate the
optimization problem and propose the ADMM-based algorith-
m. The performance evaluation is discussed in Section IV.
Finally, Section V summarizes the paper.

II. NETWORK MODEL FOR EMERGENCY BACKUP

A. Time-Variant Inter-DC Network
Fig. 1 shows an example of time-variant inter-DC networks

during disasters. Basically, when a disaster happens, it would
damage certain DC(s) at first (e.g., DC 1 in Fig. 1), and then



Fig. 1. Time-variant inter-DC network during emergency backup.

with time going on, other DCs might become new victims
(e.g., DCs 2 and 3 in Fig. 1). Hence, if we take a snapshot of
the inter-DC network at any instant, the DCs can be classified
into two categories: damaged and safe ones. Consequently, the
emergency backup should try to evacuate important data from
the DCs that are predicted to be damaged to the safe ones at
each instant, and during the process, the evacuated data can be
buffered at certain DCs that would be safe for the time being.
We can denote the original topology of the inter-DC network

as G(V,E), where V = {1, · · · , |V |} is the set of DCs and
E represents the set of links that connect the DCs. Then, we
define a DC set V d to include the DCs that would become
damaged eventually due to the disaster, while the remaining
DCs (i.e., V \V d) would be safe for the whole process. For a
DC i ∈ V d, we assume that it would be safe for a period
of Ti, which is its warning time. Hence, for the inter-DC
network, the time window for emergency backup is max

i∈V d

(Ti).
Note that, the warning time of each DC can be estimated
according to environmental conditions [4], and thus we assume
that it is known at the beginning of emergency backup.
The emergency backup can be considered as a discrete-time
system whose operation status only changes on time interval
t = Δt, 2Δt, · · · . Normalizing the time with Δt, we get the
operation time as t = 1, 2, · · · , T , where T = max

i∈V d

(Ti)/Δt.

B. Modeling with Variable TEN (V-TEN)
Note that, to directly optimize the emergency backup in a

time-variant inter-DC network, we need to solve a problem of
fractional multi-commodity flows over time, which is known
to be NP-hard [13]. Therefore, we introduce the preprocessing
that leverages the time-expanded network (TEN) approach
[14] to simplify the model. As the topology of the inter-
DC network is time-variant, we modify the TEN approach
to variable TEN (V-TEN) and use it to transform the dynamic
emergency backup into a static flow problem.
Fig. 2(a) shows an example of V-TEN. Specifically, we first

replicate the network topology for T times, where the t-th
replica represents the topology at time t and is denoted as
Gt(V t, Et). The bandwidth of a link et ∈ Et is denoted as
Bet , which represents the link’s available bandwidth at time t.
In order to represent the available DC storage space that can
be used to buffer data at time t, we insert a directed link eti
from each DC i in Gt to the same DC in Gt+1 and set its
bandwidth Bet

i
as the available storage space of DC i at time

(a) Normal V-TEN (b) Modified V-TEN for ADMM

Fig. 2. Modeling with variable TEN (V-TEN) approaches.

t. Then, we define a link set Es = {eti, ∀t, i} to include all
these storage links. Note that, as the topology of the inter-DC
network is time-variant due to the disaster, we then need to
remove the DCs and links that would have become damaged at
time t in Gt. The V-TEN G(V , E) can be obtained by including
the modified replicas and all the feasible storage links.
Apparently, when t = 1, all the DCs are up and running,

i.e., V 1 = V , and the DCs that would become damaged in the
future are the sources of the emergency backup. While each
of the DCs in V \ V d in GT can be a feasible destination of
the emergency backup. Next, we insert a super sink v̂ in G to
simply the flow routing. Specifically, v̂ ends a directed virtual
link from each safe DC in V \ V d in GT . The bandwidth of
each virtual link is the storage capacity of the DC from which
it origins. Finally, we finish the preprocessing to construct
the V-TEN G(V , E), and then the dynamic emergency backup
problem is transformed into a static flow problem to find the
profit-maximized multi-commodity flow (PM-MCF) in G, by
considering both data utility and resource cost.

C. Models of Data Utility and Resource Cost
Similar to our work in [10], we still assume that the utility of

emergency backup depends on the size of the backed-up data.
Specifically, the utility function of a damaged DC i ∈ V d is
defined as fi(si), where si is the total backed-up data that is
successfully evacuated to safe DC(s) in V \ V d. Here, since
each endangered DC would try to pump data out in descending
order of its value, we use a logarithmic function for fi(·) [15].
Meanwhile, the costs of the storage and bandwidth resources
used in the emergency backup should also be considered in
the optimization, and thus we assign a unit bandwidth cost
to each link in G. Note that, the unit bandwidth cost of the
virtual links to v̂ is 0. Then, the emergency backup’s profit is
total utility minus total cost.

III. PROBLEM FORMULATION AND ADMM-BASED
DISTRIBUTED ALGORITHM

A. Optimization Model
For simplicity, we use link set E to include all the links in

{Et, ∀t} and Es. Hence, we can unify the representations of
et ∈ Et and eti ∈ Es as e ∈ E . Then, the available bandwidth



of a link e ∈ E is denoted as Be, and we use bi,e and ci,e to
represent the bandwidth allocated on link e for backing up the
data from DC i ∈ V d and its unit cost, respectively. Therefore,
the optimization formulation of emergency backup is
Objective:

Maximize
∑
i∈V d

[
fi(si)−

∑
e∈E

ci,e · bi,e

]
. (1)

Constraints:
1) Data Size Constraint:

si ≤ Ci, ∀i ∈ V
d
, (2)

where Ci represents the total amount of data on DC i ∈ V d.
Eq. (2) ensures that the amount of backed-up data would not
exceed the originally stored data in each DC i ∈ V d.
2) Link Capacity Constraint:∑

i∈V d

bi,e ≤ Be, ∀e ∈ E . (3)

Eq. (3) ensures that the aggregated bandwidth on each link
would not exceed its capacity.
3) Flow Conservation Constraint:

∑
e∈v+

bi,e−
∑
e∈v−

bi,e =

⎧⎪⎨
⎪⎩

si, v = i,

− si, v = v̂,

0, Otherwise,

∀i ∈ V
d
, v ∈ V,

(4)

where V includes all the nodes in the V-TEN G, and v+ and
v− denote the sets of outgoing and incoming links of node v,
respectively. Eq. (4) ensures that for any intermediate DC, the
total of in- and out-flows for the data backup of DC i is 0,
while the total amount of the data sent from DC i is equal to
that of the data received by the super sink v̂.
Note that, the V-TEN approach simplifies the optimization

at the cost of an increased network size. Namely the num-
bers of variables and constraints i.e., |V d| · (1 + |E|) and
|E|+ |V d| · (|V|+ 1), increase exponentially with the backup
window T . In the following, we will leverage the alternating
direction method of multipliers (ADMM) [12] to develop a
time-efficient algorithm for the emergency backup.

B. Introduction of ADMM
ADMM is a powerful tool to solve structured optimizations,

and especially fits for the design of distributed algorithms [12].
More specifically, ADMM solves problems in the form

Minimize f(�x) + g(�z)

s.t. A · �x+B · �z = �c,
(5)

with variables �x and �z, where A and B are constant matrices,
�c is a constant vector and f(·) and g(·) are convex functions.
Thus, the variables are separated into two independent vectors,
not only in the objective but also in the constraints. To solve
the optimization in Eq. (5), ADMM tries to find the saddle
point of the following augmented Lagrangian function.

Lρ(�x, �y, �z) =f(�x) + g(�z) + �y
T · [A · �x+B · �z − �c]

+
ρ

2
· ‖A · �x+B · �z − �c‖22,

(6)

where �y is the vector of dual variables, ‖A · �x + B · �z − �c‖22
is the quadratic penalty term for accelerating the convergence
and improving the robustness of the dual update, and ρ > 0 is
the penalty parameter. Since the separation of variables �x and
�z enables them to be optimized independently in an alternating
manner, ADMM can divide a large-scale optimization into
smaller subproblems that can be easily solved in parallel.

C. ADMM-based Distributed Algorithm
1) Transforming Optimization into ADMM Form: By com-

paring the optimization defined by Eqs. (1)-(4) to the standard
form of ADMM in Eq. (5), we find that it cannot be solved
with ADMM directly for two issues. Firstly, variables {si} and
{bi,e} are coupled in Eq. (4), making the variables inseparable
in ADMM. Secondly, Eqs. (3) and (4) mix {bi,e} across DC
nodes {i} and {e}, respectively, which makes the subproblems
extremely difficult to be solved.
In order to address the first issue, we add |V d|+ 1 virtual

nodes to the V-TEN G(V , E). Specifically, for each damaged
DC i ∈ V d, we insert a virtual node ṽi and connect it to DC i
with a virtual link ẽi. While the available bandwidth on virtual
link ẽi is set as the total amount of data on DC i (i.e., Bẽi =
Ci). Similarly, we also add a new virtual node v̂′ to connect
to the super sink v̂. Then, we obtain the modified V-TEN
G′(V ′, E ′) for ADMM as shown in Fig. 2(b). It can be seen that
in the modified V-TEN G′, the original sources and destination
for the emergency backup become intermediate nodes. Hence,
the flow conservation constraint in Eq. (4) becomes 0 on the
right side for all the original nodes in V . Moreover, variables
{si} become {bi,ẽi} and thus Eqs. (2) and (3) can be unified.
For the second issue, we introduce auxiliary variables {zi,e}

to reformulate the optimization such that the link capacity and
flow conservation constraints can be decoupled.

zi,e = bi,e, ∀i ∈ V
d
, e ∈ E ′

. (7)

Hence, Eqs. (2) and (3) are unified as∑
i∈V d

zi,e ≤ Be, ∀e ∈ E ′
. (8)

Then, we introduce a set of adjacent parameters {av,e} to
indicate the relation among links and nodes. Specifically, if
e ∈ v+, we have av,e = 1, if e ∈ v−, we have av,e = −1, and
av,e = 0 otherwise. Note that, as we only care about the flows
in the original V-TEN G, we set all the adjacent parameters
that relate to the newly-added virtual nodes/links as 0, and
thus the flow conservation constraints in Eq. (4) become∑

e∈E′

av,e · bi,e = 0, ∀i ∈ V
d
, v ∈ V ′

. (9)

Next, we introduce another set of parameters to indicate
whether a link e ∈ E ′ is a newly-added virtual link ẽi,
i.e., if e = ẽi, i ∈ V d, we have hi,e = 1, and hi,e = 0
otherwise. Finally, the optimization defined by Eqs. (1)-(4)
gets transformed into

Minimize
∑
i∈V d

∑
e∈E′

[ci,e · zi,e − fi(hi,e · bi,e)]

s.t. Eqs. (7)-(9).
(10)



It can be seen that the optimization in Eq. (10) takes the
standard ADMM form, and hence could be solved time-
efficiently with a distributed algorithm [12].
2) Solving Optimization with ADMM Approach: We design

an augmented Lagrangian function to solve the optimization
in Eq. (10) with ADMM

Lρ =
∑
i∈V d

∑
e∈E′

[−fi(hi,e · bi,e) + ci,e · zi,e]

+
∑
i∈V d

∑
e∈E′

[
ϕi,e · (bi,e − zi,e) +

ρ

2
‖bi,e − zi,e‖

2
2

]
,
(11)

where {ϕi,e} are the dual variables. Then, we obtain the
subproblems for the variables and solve them as follows.
Step 1 (zi,e-minimization): We take variables {zi,e} from

the Lagrangian function in Eq. (11) and solve the following
subproblem for each link e ∈ E ′ in iterations.

Minimize
∑
i∈V d

[ρ
2
· z2i,e −

(
ϕ

(k)
i,e + ρ · b

(k)
i,e − ci,e

)
· zi,e

]
s.t. Eq. (8),

(12)
where the variables with superscript “(k)” mean that they
are obtained in the k-th iteration. In each iteration, the op-
timization is a quadratic program with a series of inequal-
ity constraints, which can be solved exactly by using the
Karush-Kuhn-Tucker (KKT) conditions [11]. Specifically, in
the (k+1)-th iteration, variables {zi,e} are updated as follows

z
(k+1)
i,e =
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎛
⎝b

(k)
i,e +

ϕ
(k)
i,e − ci,e

ρ
, 0

⎞
⎠ ,

∑
j∈V d

⎛
⎝b

(k)
j,e +

ϕ
(k)
j,e − cj,e

ρ

⎞
⎠ ≤ Be,

max

⎛
⎝b

(k)
i,e +

ϕ
(k)
i,e − γ

(k+1)
e − ci,e

ρ
, 0

⎞
⎠ ,Otherwise,

(13)
where the parameter γk+1

e > 0 is introduced when for a
specific link e, the constraint in Eq. (8) cannot be satisfied.
Hence, we use γk+1

e to decrease the value of the corresponding
z
(k+1)
i,e and ensure that in each iteration, variables {zi,e}
represent a feasible solution to the optimization in Eq. (12).
Step 2 (bi,e-minimization): With the variables z

(k+1)
i,e ob-

tained in Step 1, the subproblem to get {bi,e} is as follows.

Minimize
∑
i∈V d

∑
e∈E′

[
bi,e · (

ρ

2
· bi,e + ϕ

(k)
i,e − ρ · z

(k+1)
i,e )

−fi(hi,e · bi,e)]

s.t. Eq. (9).

(14)

Then, to address the optimization of network flow with strict
flow conservation, we introduce a Lagrangian multiplier δi,v
to relax the constraints in the subproblem [13]. Hence, the
optimization in Eq. (14) is reformulated as

Minimize
∑
i∈V d

∑
e∈E′

(
ϕ

(k)
i,e − ρ · z

(k+1)
i,e +

∑
v∈V′

δ
(k)
i,v · av,e

)
· bi,e

+
∑
i∈V d

∑
e∈E′

[ρ
2
· b2i,e − fi(hi,e · bi,e)

]
,

(15)

and in the iterations, {δi,v} are updated as

δ
(k+1)
i,v = δ

(k)
i,v + λ ·

∑
v∈V′

av,e · b
(k+1)
i,e , (16)

where λ is the step size. Note that, depending on the form of
fi(·), the subproblem on each link in Eq. (15) can be solved
with a standard mathematical approach. For instance, if we
adopt a logarithmic function as fi(si) = αi · log(1 + si),
where αi is the utility weight of DC i [10], we can apply the
Taylor series expansion to fi(·), convert the optimization to a
quadratic problem, and then obtain the analytical solution as

b
(k+1)
i,e = max

⎛
⎝ρ · z

(k+1)
i,e − ϕ

(k)
i,e − g(b

(k)
i,e ) + δ

(k)

i,e+
− δ

(k)

i,e−

ρ+ L(b
(k)
i,e )

, 0

⎞
⎠ ,

(17)
where we have g(b(k)i,e ) and L(b

(k)
i,e ) as

g(b
(k)
i,e

) =
αi · hi,e

log(10)
·
1 + 2 · b

(k)
i,e

(1 + b
(k)
i,e )

2
, L(b

(k)
i,e

) =
αi · hi,e

log(10) · (1 + b
(k)
i,e )

2
, (18)

and define e− and e+ as the two end-nodes of a directed link
e, i.e., e = (e−, e+) [10].
Step 3 (ϕi,e-update): With the variables {z

(k+1)
i,e } and

{b
(k+1)
i,e }, we can update the dual variables {ϕi,e} as

ϕ
(k+1)
i,e = ϕ

(k)
i,e + ρ · (b

(k+1)
i,e − z

(k+1)
i,e ). (19)

Finally, the ADMM-based distributed algorithm for emer-
gency backup is presented in Algorithm 1, if we assume that
the utility function fi(·) takes the form of a logarithmic func-
tion, i.e., fi(si) = αi · log(1+si). Note that, with Algorithm 1,
we solve the subproblems for each link independently since in
each iteration, all the variables related to a link can be updated
with local information, i.e., the values of variables related
to the link or its end-nodes in the previous iteration. Hence,
the ADMM-based algorithm is a distributed one and can be
implemented in a parallel manner for high time-efficiency.

IV. PERFORMANCE EVALUATION
A. Simulation Setup
We use an inter-DC network with the NSFNET topology

in Fig. 3 to evaluate the performance of our ADMM-based
emergency backup algorithm (ADMM). Basically, we assume
that each node in the topology hosts a DC and at most
five of them (i.e., DCs 10-14 in Fig. 3) could be impacted
by an upcoming disaster within a time window of T . In
each simulation, the actual number of damaged DCs (i.e.,
|V d|) is selected within [2, 5] to emulate different disaster
severities. Specifically, there are four disaster scenarios with
DC-down sequences as V d = {14, 13}, V d = {14, 13, 12},
V d = {14, 13, 12, 11}, and V d = {14, 13, 12, 11, 10}, which
can happen within different time windows. In each simulation,
the damaged DCs will be impacted at random time according
to a sequence. The amount of data on each damaged DC is
set randomly, while the total data for backup is fixed as 400
TBytes. Similarly, the storage capacity of each safe DC is also
randomly chosen under the constraint that the total capacity is



Fig. 3. Inter-DC network with NSFNET topology.

500 TBytes. The utility function takes the form of fi(xi) =
αi · log(1 + xi), where for DCs i = {14, 13, 12, 11, 10},
αi = {100, 120, 150, 200, 160}, respectively. The bandwidth
capacity of each link is chosen from [30, 80] Gbps, while
the unit bandwidth cost ranges within [0.01, 0.015] units per
TByte. The simulations run on a computer with 3.1 GHz Intel
Core i3-2100 CPU and 8 GB RAM.

Algorithm 1: ADMM-based Distributed Algorithm

1 k = 0, {b
(0)
i,e } = 0, {ϕ(0)

i,e } = 0, {δ(0)i,v } = 0;
2 while the solution has not converged do
3 get values of {z(k+1)

i,e } with Eq. (13);
4 get values of {b(k+1)

i,e } with Eq. (17);
5 get values of {δ(k+1)

i,v } with Eq. (16);
6 get values of {ϕ(k+1)

i,e } with Eq. (19);
7 k = k + 1;
8 end

We compare ADMM with three benchmark algorithms. The
first one is the highest-utility-data-first algorithm (HUDF),
which sorts all the data for backup in descending order of
the utility at each backup time, and then it calculates the
corresponding maximum flows to transmit the data in sequence
in the best-effort manner. The procedure is repeated until the
time window T ends or all the data for backup is evacuated
out. The second one is the V-TEN based HUDF algorithm
(VTEN-HUDF). Specifically, we first construct a V-TEN as
described in Section II-B and then apply the HUDF algorithm
in the V-TEN. For the last one, we leverage the sub-gradient
approach that we proposed in [10] and modify it to fit to V-
TEN. Specifically, we use the dual decomposition based on the
sub-gradient method [11] to solve the original optimization de-
scribed in Section III-A. Hence, in the following discussions,
we refer to this benchmark algorithm as Sub-Grad.

B. Convergence Performance
We first obtain the duality gap of ADMM, which is the dif-

ference between the prime solution and that from ADMM. The
prime solution is obtained by solving the original optimization
in Section III-A directly. Firstly, we set the time window T = 6
minutes1, select |V d| = 4, and plot the duality gap of ADMM
1In all the simulations, we have the time interval as Δt = 1 minute.

0 200 400 600 800 1000
−250

−200

−150

−100

−50

0

50

100

Iteration Number

D
ua

lit
y 

G
ap

Fig. 4. Duality gap of ADMM (T = 6 and |V d| = 4).

TABLE I
ITERATION NUMBERS FOR ADMM TO CONVERGE UNDER DIFFERENT

ACCURACY REQUIREMENTS

|V d| 2 3 4 5

Accuracy
T 3 6 9 12 15 18

10 70 150 160 310 510 550
1 160 340 830 1700 2190 5310
0.1 1570 2850 2820 4670 5910 15950

in Fig. 4. It can be seen that the duality gap converges within
300 iterations. Then, we try more combinations of T and |V d|
and obtain the iteration numbers for ADMM to converge under
different accuracy requirements. Table I shows the results.
Note that, the simulations have verified that ADMM takes less
than 1.1 second to finish 15950 iterations, and thus the results
in Fig. 4 and Table I confirm the time-efficiency of ADMM.

C. Robustness Analysis

We then investigate the robustness of ADMM. Specifically,
since ADMM introduces Lagrangian multipliers to relax the
flow conservation constraints in dual decomposition, we can
change the value of the step size λ to evaluate its robustness.
With T = 6, |V d| = 4 and the accuracy requirement as
1, Table II shows the iteration numbers and running time
for ADMM to converge using different λ. We observe that
ADMM converges faster with a larger λ and it can always
converge within 0.2 second when λ changes from 0.001 to
0.1. Note that, we also verify that ADMM performs similarly
for other combinations of T and |V d|. Therefore, we confirm
that the convergence of ADMM is robust and would not be
seriously affected by λ. On the contrary, the convergence
performance of Sub-Grad depends on the choice of λ heavily.
In other words, without a proper λ, Sub-Grad might not be
able to converge. Moreover, even after optimizing λ, Sub-Grad
converges much slower than ADMM. For example, Fig. 5
compares the duality gaps obtained by ADMM and Sub-Grad
for T = 6 and |V d| = 4. We find that ADMM converges
within 300 iterations, while Sub-Grad needs around 20000
iterations to converge even with the optimal step size λ =
0.000378. Meanwhile, our simulations also verify that ADMM
is not sensitive to parameter ρ either (i.e., the conclusion of
[12]), and the proper value of ρ can be obtained easily.



0 0.5 1 1.5 2
x 104

−200

−100

0

100

200

300

Iteration Number

D
ua

lit
y 

G
ap

ADMM
Sub−Grad

Fig. 5. Comparison on the convergence performance of ADMM and Sub-
Grad (T = 6 and |V d| = 4).

TABLE II
ITERATION NUMBERS AND RUNNING TIME FOR ADMM TO CONVERGE

WITH DIFFERENT STEP SIZES (T = 6 AND |V d| = 4)

λ 0.001 0.005 0.01 0.02 0.05 0.1
Iteration number 6300 2700 2600 1960 900 600
Time (seconds) 0.177 0.103 0.099 0.076 0.038 0.030

D. Comparisons with Benchmark Algorithms
Finally, we compare ADMM with the benchmarks in terms

of the backup profit defined in Eq. (1) and the running time,
with different combinations of T and |V d|. Table III shows the
backup profits from the algorithms. Here, “Optimal” refers to
the scheme that solves the original optimization in Section
III-A directly. It can be seen that the profits from ADMM
are always higher than those from the benchmarks and they
are almost the same as the optimal results (i.e., satisfying
the accuracy requirement of 1). Note that, for T = 30
and |V d| = 5, the problem scale is too large and thus
we have difficulty to obtain the optimal profit directly. The
profits from Sub-Grad are higher than those from VTEN-
HUDF and HUDF, and because the V-TEN approach helps
to utilize the storage capacities of DCs for buffering data,
VTEN-HUDF outperforms HUDF in terms of profit. Table
III also lists the running time of the algorithms. As expected,
solving the original optimization directly is much more time-
consuming than the rest of the algorithms. Due to their time
complexities, the running time of VTEN-HUDF and Sub-Grad
is also relatively long. Although HUDF performs the worst in
terms of profit, it is the most time-efficient algorithm. The
running time of ADMM is comparable to that of HUDF, and
it is interesting to notice that when the problem scale increases
with larger T and |V d|, the running time of ADMM increases
much slower than that of HUDF. This is because ADMM is
a distributed algorithm. Finally, we can conclude that among
all the algorithms, ADMM achieves the best tradeoff between
the backup profit and time-efficiency.

V. CONCLUSION
This paper studied the emergency backup in an inter-DC

network whose topology is time-variant and constructed a
variable TEN (V-TEN) to transform the dynamic backup into a
static flow problem. Then, we leveraged the ADMM approach

TABLE III
RESULTS ON BACKUP PROFIT AND RUNNING TIME

|V d| 2 3 4 5
T 6 9 15 20 30

Backup Profit (units)
Optimal 292.90 552.14 615.58 975.82 −
HUDF 272.63 536.32 593.73 941.50 1261.77

VTEN-HUDF 289.09 542.96 606.75 968.89 1275.85
Sub-Grad 290.20 549.98 612.05 969.53 1279.1
ADMM 292.90 552.14 615.22 975.49 1283.31

Running Time (seconds)
Optimal 6.243 19.548 35.685 46.612 −
HUDF 0.072 0.051 0.031 0.213 0.202

VTEN-HUDF 0.068 0.302 1.0 3.347 6.892
Sub-Grad 0.535 1.305 2.195 4.656 3.405
ADMM 0.139 0.160 0.272 0.279 0.243

to develop a time-efficient and distributed algorithm to solve
the problem. Simulation results showed that our ADMM-based
algorithm outperformed several existing ones.

ACKNOWLEDGMENTS
This work was supported in part by the NSFC Project

61371117 and 61573331, Natural Science Research Project
for Universities in Anhui (KJ2014ZD38), and the Strategic
Priority Research Program of the CAS (XDA06011202).

REFERENCES
[1] P. Lu et al., “Highly-efficient data migration and backup for big data

applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] [Online]. Available: https://en.wikipedia.org/wiki/2008 Sichuan
earthquake.

[3] J. Yao, P. Lu, L. Gong, and Z. Zhu, “On fast and coordinated data
backup in geo-distributed optical inter-datacenter networks,” J. Lightw.
Technol., vol. 33, pp. 3005–3015, Jul. 2015.

[4] B. Mukherjee, M. Habib, and F. Dikbiyik, “Network adaptability from
disaster disruptions and cascading failures,” IEEE Commun. Mag.,
vol. 52, pp. 230–238, May 2014.

[5] A. Bianco, L. Giraudo, and D. Hay, “Optimal resource allocation for
disaster recovery,” in Proc. of GLOBECOM 2010, pp. 1–5, Dec. 2010.

[6] J. Yao, P. Lu, and Z. Zhu, “Minimizing disaster backup window for
geo-distributed multi-datacenter cloud systems,” in Proc. of ICC 2014,
pp. 3631–3635, Jun. 2014.

[7] [Online]. Available: http://en.wikipedia.org/wiki/Big data.
[8] P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud man-

agement for profit-driven multimedia cloud computing,” IEEE Trans.
Multimedia, vol. 17, pp. 1297–1308, Aug. 2015.

[9] K. Wu, P. Lu, and Z. Zhu, “Distributed online scheduling and routing
of multicast-oriented tasks for profit-driven cloud computing,” IEEE
Commun. Lett., vol. 20, pp. 684–687, Apr. 2016.

[10] P. Lu, Q. Ling, and Z. Zhu, “Maximizing utility of time-constrained
emergency backup in inter-datacenter networks,” IEEE Commun. Lett.,
vol. 20, pp. 890–893, May 2016.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, Apr. 2004.

[12] S. Boyd et al., “Distributed optimization and statistical learning via
the alternating direction method of multipliers,” Found. Trends Mach.
Learn., vol. 3, pp. 1–122, Jan. 2011.

[13] M. Skutella, “An introduction to network flows over time,” in Research
Trends in Combinatorial Optimization, W. Cook, L. Lovasz, and J. Vy-
gen, Eds. Springer, 2009, ch. 21, pp. 451–482.

[14] L. Ford and D. Fulkerson, “Constructing maximal dynamic flows from
static flows,” Oper. Res, vol. 6, pp. 419–433, Jun. 1958.

[15] P. Lu, K. Wu, Q. Sun, and Z. Zhu, “Toward online profit-driven
scheduling of inter-DC data-transfers for cloud applications,” in Proc.
of ICC 2015, pp. 7186–7191, Jun. 2015.


