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1. Introduction
With the fast development of cloud computing, data-center networks (DCNs) are facing exponential increase of com-
puting tasks [1]. To provision these tasks, one needs to allocate not only IT resources in servers but also bandwidth on
intra-DC links. This suggests that an effective network/ITresource orchestration mechanism is desirable. Meanwhile,
it is known that the traditional DCNs that are purely based onelectrical packet switching will be unsustainable soon [2].
To address this, researchers designed various hybrid optical/electrical (H-O/E) DCNs [1, 3]. Specifically, in such an
H-O/E DCN (e.g., in Fig. 1(a)), the inter-rack interconnections combine the original electrical packet network with
an optical circuit switching network, to explore the advantages of both. Note that, task provisioning can cause highly
dynamic traffic in a DCN [4]. For instance, in terms of data-transfer distance, the ratio between inter- and intra-rack
traffic could change over time, while in terms of data-rate and life-time, mice and elephant flows would be time-variant
too. Apparently, we cannot realize effective network/IT resource orchestration in an H-O/E DCN without the precise
knowledge on its traffic characteristics. Moreover, considering the latencies of optical switch reconfiguration and vir-
tual machine (VM) migration, our orchestration mechanism should try to minimize their frequencies and find the best
time to invoke them if necessary. This, however, means that only knowing the current traffic characteristics is not good
enough, and we need to predict future traffic in the H-O/E DCN precisely. Then, based on the traffic prediction, an
intelligent decision making mechanism needs to be designedto achieve effective orchestration.

In this work, we follow the principle of predictive analytics in human brain to design and implement an H-O/E DCN
system that can realize knowledge-defined network/IT resource orchestration for task provisioning. Specifically, the
proposed system leverages two machine learning (ML) modules and makes them work collaboratively to first predict
future traffic (i.e., forecasting based on memory) and then determine the optimal network configuration (i.e., decision
making based on knowledge). The H-O/E DCN is based on software-defined networking (SDN) and the design of its
control plane is shown in Fig. 1(b). Hence, in the DCN, the servers are managed by the IT controller (IT-C) based on
OpenStack for VM deployment and migration, while the switches (i.e., both packet and optical ones) are controlled
by the network controller (NET-C) based on ONOS to forward the traffic of computing tasks. The IT-C and NET-
C are managed by a knowledge-defined orchestrator (KD-O), which makes wise decisions for network/IT resource
orchestration. Then, based on the decisions, the system mayinvoke VM migration and/or network reconfiguration to
provision the tasks cost-effectively. For instance, as suggested, the optical inter-rack network can be reconfigured in
advance to prepare for future elephant flows, and in the meantime, VM migration can be triggered to organize the
source and destination VMs of the tasks on proper racks and make the best use of the optical network. The H-O/E

Fig. 1. (a) Architecture of the H-O/E DCN, (b) Functional design of the control plane, and (c) Experimental testbed.



DCN system is implemented in a real network testbed as shown in Fig. 1(c), and we conduct experiments with live
traffic on to demonstrate the knowledge-defined network/IT resource orchestration based on predictive analytics.

2. System Design and Operation Principle
The detailed design of the control plane in the H-O/E DCN system is shown in Fig. 1(b). In the IT-C, we implement two
modules to realize dynamic VM deployment (VMDM) and migration (VMMM) in the servers, respectively, while an
IT resource and traffic monitor (MON) is also implemented there to collect network statistics periodically and forward
the results to the KD-O. We develop a network configuration module (NCM), a flow provisioning module (FPM), and
a network abstraction module (NAM), and embed them in the NET-C. Specifically, the FPM is designed to groom the
VMs’ traffic into mice and elephant flows and route them in the electrical and optical inter-rack networks, respectively,
and the NCM is controlled by the KD-O to configure the optical inter-rack network and update the topology in the
NAM accordingly. The KD-O consists of an ML-based prediction and decision making module (ML-PRD), an IT
resource and traffic database (DB), a VM management module (VM-M), and a DCN management module (DCN-M).
Based on the historical traffic statistics in the DB, the ML-PRD first predicts future traffic and then determines a proper
configuration of the optical inter-rack network to carry it.The decisions from the ML-PRD are implemented by the
VM-M and DCN-M, which talk with the IT-C and NET-C, respectively, for orchestrating the network/IT resources.

Fig. 2 explains the principle of ML-PRD, which includes two ML modules and makes them work collaboratively to
forecast future traffic precisely and then drive strategic decision making,i.e., achieving predictive analytics.
Predicting Future Traffic : As explained in Fig. 2(a), the first ML module uses the historical traffic matrixes among
VMs in time periods{t − T + 1, · · · , t} as the training set to predict the traffic matrix in time period t + 1. This is
repeated in every time period. Note that, as the training samples are unsupervised, we apply an enhanced ML method
to insert newly-collected traffic matrixes in the training set consistently, for reducing the prediction loss.
Decision Making on Optical Network Configuration: With the predicted traffic matrix among VMs, the ML-PRD
obtains the future traffic matrix among the top-of-rack (ToR) switches. Then, as indicated in Fig. 2(b), the second ML
module determines the configuration of the optical inter-rack network with a supervised ML method. Specifically, we
first set the module to its training phase, randomly generateenough combinations of ToR traffic matrix and optical
network configuration, implement the combinations, and collect average data-transfer latency of the flows for each
combination. Here, the average latency is used as the merit of an optical network configuration. We assume that all the
flows are based on TCP, and the average latency is the average time that is spent by a task to finish its data-transfer
between a VM pair. We use the combinations of ToR traffic matrix and optical network configuration and their average
latencies to train the ML model. When the training has been done, the module is set to its operational phase. Hence, it
can determine a proper optical network configuration based on the predicted traffic from the first ML module.

Finally, with the decisions from the second ML module, the ML-PRD chooses to either keep the H-O/E DCN system
unchanged or reconfigure it accordingly, for realizing cost-effective network/IT resource orchestration.

3. Experimental Demonstrations
Our experimental demonstrations use the network testbed shown in Fig. 1(a). The control plane of the H-O/E DCN,
i.e., the IT-C, NET-C and KD-O, is implemented in commodity servers. We leverage open-source softwares and modify
them to fit into our requirements. Specifically, the IT-C and NET-C are based on OpenStack and ONOS, respectively,
while the ML-based modules in the ML-PRD are implemented based on TensorFlow. The data plane of the H-O/E

Fig. 2. Operation principle of the ML-based prediction and decision making module (ML-PRD).
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Fig. 3. (a) Average prediction loss of the first ML module, (b)Example on predicted and actual data-transfer volumes
between a VM pair, (c) Accuracy of decision making by the second ML module for optical network configuration, (d)
and (e) Wireshark captures for optical network configuration and VM migration, and (f) Average data-transfer latency.

DCN system consists of four servers forming three racks to carry VMs, three ToR switches, six aggregated/core
switches to build the electrical inter-rack network, and a reconfigurable optical switch (i.e., Polatis 24×24 OXC) to
realize the optical inter-rack network. Here, the ToR switches are commercial OpenFlow switches (i.e., Pica-8). Each
ToR switch is equipped with several 1GbE ports to connect with both the server(s) in its rack and the aggregate switches
in the electrical inter-rack network, and it also has two optical 10GbE ports to realize inter-rack connections through
the reconfigurable optical switch. In the experiments, we get the traffic matrixes with the DCT2GEN tool [5], and the
obtained traffic matrixes are implemented by running iPerf on the VMs. Since we can hardly saturate the optical 10GbE
ports on the ToR switches with the traffic generated by the four servers, we emulate the high traffic-load scenarios by
limiting the ports’ data-rates. Specifically, on each ToR switch, the 1GbE ports that connect to aggregated switches
have a peak throughput of 300 Mbps, while the data-rate of each optical 10GbE port is limited below 700 Mbps.

Fig. 3 shows the experimental results. The average prediction loss in the first ML module,i.e., the mean square error
of the predicted data-transfer volumes among VMs to the actual ones, is presented in Fig. 3(a). We observe that our
enhance ML method reduces the loss to 0.0048 (i.e., a deviation≤ 1 MByte) quickly within 180 iterations. Fig. 3(b)
illustrates an example on the predicted and actual data-transfer volumes between a VM pair. The training performance
of the second ML module is plotted in Fig. 3(c), which indicates that after 4×104 iterations (i.e., only taking a few
seconds), the module can provide the best decisions with an accuracy of 98.82%,i.e., it can find the optimal optical
network configuration automatically with a high accuracy. To verify the feasibilities of network/IT resource orchestra-
tion in the H-O/E DCN, Figs. 3(d) and 3(e) shows the wiresharkcaptures for optical network reconfiguration and VM
migration, respectively. As indicated in Fig. 3(d), the NET-C sets up a TCP connection to operate the reconfigurable
optical switch (i.e., OXC). The message in Fig. 3(e) suggests that a VM at host “sdn-16” has migrated to host “jacky-
Lenovo” successfully. Fig. 3(f) compares the average data-transfer latency of flows in the H-O/E DCN for with and
without the KD-O, and the results verify that the latency is reduced effectively with our proposed KD-O.

4. Conclusion
We follow the principle of predictive analytics to design and experimentally demonstrate an H-O/E DCN system that
achieves knowledge-definednetwork/IT resource orchestration to reduce the average data-transfer latencies effectively.
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