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1. Introduction

With the fast development of cloud computing, data-cenédworks (DCNs) are facing exponential increase of com-
puting tasks [1]. To provision these tasks, one needs toathonot only IT resources in servers but also bandwidth on
intra-DC links. This suggests that an effective networkd3ource orchestration mechanism is desirable. Meanwhile
it is known that the traditional DCNs that are purely basedlentrical packet switching will be unsustainable soon [2]
To address this, researchers designed various hybridabietiectrical (H-O/E) DCNs [1, 3]. Specifically, in such an
H-O/E DCN (.g., in Fig. 1(a)), the inter-rack interconnections combine ¢iiginal electrical packet network with
an optical circuit switching network, to explore the adwg#s of both. Note that, task provisioning can cause highly
dynamic traffic in a DCN [4]. For instance, in terms of datansfer distance, the ratio between inter- and intra-rack
traffic could change over time, while in terms of data-rate ifie-time, mice and elephant flows would be time-variant
too. Apparently, we cannot realize effective network/ISaerce orchestration in an H-O/E DCN without the precise
knowledge on its traffic characteristics. Moreover, coesity the latencies of optical switch reconfiguration and vi
tual machine (VM) migration, our orchestration mechanisimgd try to minimize their frequencies and find the best
time to invoke them if necessary. This, however, means thigtiaowing the current traffic characteristics is not good
enough, and we need to predict future traffic in the H-O/E DG&tisely. Then, based on the traffic prediction, an
intelligent decision making mechanism needs to be desigmadhieve effective orchestration.

In this work, we follow the principle of predictive analysiicn human brain to design and implement an H-O/E DCN
system that can realize knowledge-defined network/IT nesoarchestration for task provisioning. Specifically, the
proposed system leverages two machine learning (ML) msduid makes them work collaboratively to first predict
future traffic (.e., forecasting based on memory) and then determine the dptgha&ork configurationi(e., decision
making based on knowledge). The H-O/E DCN is based on sadtdafined networking (SDN) and the design of its
control plane is shown in Fig. 1(b). Hence, in the DCN, therses are managed by the IT controller (IT-C) based on
OpenStack for VM deployment and migration, while the swélf.e., both packet and optical ones) are controlled
by the network controller (NET-C) based on ONOS to forwarel tiraffic of computing tasks. The IT-C and NET-
C are managed by a knowledge-defined orchestrator (KD-Ofhahakes wise decisions for network/IT resource
orchestration. Then, based on the decisions, the systeninvake VM migration and/or network reconfiguration to
provision the tasks cost-effectively. For instance, agyssted, the optical inter-rack network can be reconfigured i
advance to prepare for future elephant flows, and in the nmeanVM migration can be triggered to organize the
source and destination VMs of the tasks on proper racks ate mha best use of the optical network. The H-O/E
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Fig. 1. (a) Architecture of the H-O/E DCN, (b) Functional @gsof the control plane, and (c) Experimental testbed.



DCN system is implemented in a real network testbed as showaigi 1(c), and we conduct experiments with live
traffic on to demonstrate the knowledge-defined networlésburce orchestration based on predictive analytics.

2. System Design and Operation Principle

The detailed design of the control plane in the H-O/E DCNeays shown in Fig. 1(b). In the IT-C, we implement two
modules to realize dynamic VM deployment (VMDM) and migoat{\VMMM) in the servers, respectively, while an
IT resource and traffic monitor (MON) is also implementedé&te collect network statistics periodically and forward
the results to the KD-O. We develop a network configurationlub® (NCM), a flow provisioning module (FPM), and
a network abstraction module (NAM), and embed them in theES$pecifically, the FPM is designed to groom the
VMs'’ traffic into mice and elephant flows and route them in tleegical and optical inter-rack networks, respectively,
and the NCM is controlled by the KD-O to configure the opticaér-rack network and update the topology in the
NAM accordingly. The KD-O consists of an ML-based predintind decision making module (ML-PRD), an IT
resource and traffic database (DB), a VM management modiel, and a DCN management module (DCN-M).
Based on the historical traffic statistics in the DB, the MRBPfirst predicts future traffic and then determines a proper
configuration of the optical inter-rack network to carryTitbe decisions from the ML-PRD are implemented by the
VM-M and DCN-M, which talk with the IT-C and NET-C, respeatly, for orchestrating the network/IT resources.

Fig. 2 explains the principle of ML-PRD, which includes twd_vhodules and makes them work collaboratively to
forecast future traffic precisely and then drive strategicision makingi.e., achieving predictive analytics.
Predicting Future Traffic : As explained in Fig. 2(a), the first ML module uses the histdrtraffic matrixes among
VMs in time periods{t — T +1,--- ,t} as the training set to predict the traffic matrix in time pdric+ 1. This is
repeated in every time period. Note that, as the trainingoéesrare unsupervised, we apply an enhanced ML method
to insert newly-collected traffic matrixes in the trainireg sonsistently, for reducing the prediction loss.
Decision Making on Optical Network Configuration: With the predicted traffic matrix among VMs, the ML-PRD
obtains the future traffic matrix among the top-of-rack (JsRitches. Then, as indicated in Fig. 2(b), the second ML
module determines the configuration of the optical inteknmaetwork with a supervised ML method. Specifically, we
first set the module to its training phase, randomly genarateigh combinations of ToR traffic matrix and optical
network configuration, implement the combinations, andecoblaverage data-transfer latency of the flows for each
combination. Here, the average latency is used as the ni@rtaptical network configuration. We assume that all the
flows are based on TCP, and the average latency is the avéregthtt is spent by a task to finish its data-transfer
between a VM pair. We use the combinations of ToR traffic mainid optical network configuration and their average
latencies to train the ML model. When the training has beearedthe module is set to its operational phase. Hence, it
can determine a proper optical network configuration basetti® predicted traffic from the first ML module.

Finally, with the decisions from the second ML module, thed-MRD chooses to either keep the H-O/E DCN system
unchanged or reconfigure it accordingly, for realizing ef§éctive network/IT resource orchestration.

3. Experimental Demonstrations

Our experimental demonstrations use the network testbadrsin Fig. 1(a). The control plane of the H-O/E DCN,
i.e, the IT-C, NET-C and KD-O, is implemented in commodity sesv&Ve leverage open-source softwares and modify
them to fit into our requirements. Specifically, the IT-C anlTNC are based on OpenStack and ONOS, respectively,
while the ML-based modules in the ML-PRD are implementeccam TensorFlow. The data plane of the H-O/E
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Fig. 2. Operation principle of the ML-based prediction argdidion making module (ML-PRD).
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Fig. 3. (a) Average prediction loss of the first ML module, EXample on predicted and actual data-transfer volumes
between a VM pair, (c) Accuracy of decision making by the selchlL module for optical network configuration, (d)
and (e) Wireshark captures for optical network configuraiad VM migration, and (f) Average data-transfer latency.

DCN system consists of four servers forming three racks toycdMs, three ToR switches, six aggregated/core
switches to build the electrical inter-rack network, andeonfigurable optical switchi.€., Polatis 24<24 OXC) to
realize the optical inter-rack network. Here, the ToR shétcare commercial OpenFlow switches.(Pica-8). Each
ToR switch is equipped with several 1GbE ports to connedtt dth the server(s) in its rack and the aggregate switches
in the electrical inter-rack network, and it also has twaagt10GbE ports to realize inter-rack connections through
the reconfigurable optical switch. In the experiments, wettieetraffic matrixes with the DCT2GEN tool [5], and the
obtained traffic matrixes are implemented by running iPetthe VMs. Since we can hardly saturate the optical L0GbE
ports on the ToR switches with the traffic generated by the $ewers, we emulate the high traffic-load scenarios by
limiting the ports’ data-rates. Specifically, on each ToRtsly the 1GbE ports that connect to aggregated switches
have a peak throughput of 300 Mbps, while the data-rate df eptical LOGbE port is limited below 700 Mbps.

Fig. 3 shows the experimental results. The average predildss in the first ML modulé,e., the mean square error
of the predicted data-transfer volumes among VMs to theahcioes, is presented in Fig. 3(a). We observe that our
enhance ML method reduces the loss 10038 {.e., a deviation< 1 MByte) quickly within 180 iterations. Fig. 3(b)
illustrates an example on the predicted and actual datasfEavolumes between a VM pair. The training performance
of the second ML module is plotted in Fig. 3(c), which indesthat after 4« 10* iterations {.e., only taking a few
seconds), the module can provide the best decisions witlt@racy of 9832%,i.e., it can find the optimal optical
network configuration automatically with a high accuraayveérify the feasibilities of network/IT resource orchestr
tion in the H-O/E DCN, Figs. 3(d) and 3(e) shows the wiresltatures for optical network reconfiguration and VM
migration, respectively. As indicated in Fig. 3(d), the NEBets up a TCP connection to operate the reconfigurable
optical switch {.e.,, OXC). The message in Fig. 3(e) suggests that a VM at host1&dias migrated to host “jacky-
Lenovo” successfully. Fig. 3(f) compares the average ttatasfer latency of flows in the H-O/E DCN for with and
without the KD-O, and the results verify that the latencyeduced effectively with our proposed KD-O.

4. Conclusion

We follow the principle of predictive analytics to desigrdaaxperimentally demonstrate an H-O/E DCN system that
achieves knowledge-defined network/IT resource orchiéstrin reduce the average data-transfer latencies efédyti
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