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Abstract—It is known that the multi-broker based management
plane can potentially provide a realistic solution to facilitate
incentive-driven cross-domain network orchestration in multi-
domain software-defined elastic optical networks (SD-EONs).
Such network orchestration assures the autonomy of each domain
and supports economical service provisioning across multiple
domains as well. In this work, we consider the economic principle
in multi-broker based multi-domain SD-EONs and study how to
realize incentive-driven service provisioning with broker compe-
titions. We first present the theoretical model of the network
operations to describe the noncooperative game in which the
brokers compete for inter-domain provisioning tasks with only
incomplete information on their competitors. Then, we analyze
the Nash equilibrium in a simplified version of the game, and
show that to maximize the brokers’ profits in long-term repeated
games, an effective bidding strategy is needed for the brokers to
predict their competitors’ behaviors and price their services in
the optimal way. The bidding strategy is designed by leveraging
the kernel density estimation scheme. Finally, to demonstrate the
effectiveness of the proposed bidding strategy, we implement it in
an OpenFlow-based multi-domain SD-EON control plane testbed.
The experimental results verify that our system performs well
and the brokers can obtain higher profits with the proposed
bidding strategy in repeated games.

Index Terms—Software-defined elastic optical networks (SD-
EONs), Multi-broker, Noncooperative game, Nash Equilibrium.

I. I NTRODUCTION

I NCENTIVE-driven brokers can promote higher perfor-
mance, better resilience, and more efficient resource utiliza-

tion in the future Internet that consists of many autonomous
systems (AS’s). Specifically, they are positioned in a higher
network control and management (NC&M) level than the
domain managers of AS’s for coordinating the cross-domain
operation. Since multiple brokers can compete/cooperate to
realize cross-domain service provisioning, they respect the
autonomy of each AS without dictating the top-down au-
thoritative management [1]. Indeed, recent architecturalstudy
has shown the remarkable effectiveness of incentive-driven
brokers in providing lower service latency and higher net-
work throughput and availability [2], and the architecturehas
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also been experimentally demonstrated in small scale inter-
continental multi-domain software-defined networks (SDNs)
[3]. Although the management plane with incentive-driven
brokers can be effective in orchestrating heterogeneous AS’s,
i.e., heterogeneous in terms of physical-layer technology (e.g.,
wireless, wireline, optical and satellite), and in terms of
network protocols and programmability [4, 5], its advantage
in multi-domain software-defined elastic optical networks(SD-
EONs) would potentially be more distinct.

SD-EONs combine the advantages from the programmabili-
ty of SDNs and those from the efficient and flexible utilization
of Tb/s network capacity by elastic optical networks (EONs).
Specifically, EONs support super-channel and sub-wavelength
switching with flexible spectrum allocation across a seriesof
spectrally-contiguous frequency slots (FS’s), and leverage ad-
vanced transmission techniques to optimize spectral efficiency
[6, 7]. Meanwhile, SDN incorporates programmable central-
ized NC&M to undertake sophisticated spectrum management
within a domain (or AS) [8–10]. As a result, SD-EONs can
potentially realize adaptive, programmable, and application-
aware ultra-high capacity networking with enhanced service
support [11, 12]. Now, what is important is to design the
NC&M architecture for facilitating efficient end-to-end ser-
vice provisioning across multiple SD-EON domains, such
that the distributed resources can be utilized effectively. To
achieve this, we can use the hierarchical NC&M architecture
that places an orchestrator on top of the domain managers.
Unfortunately, this means that the orchestrator can dictate
the entire multi-domain network, which is impractical when
the domains are from different operators, causes survivability
and scalability issues, and also violates the original (and
successful) principle of autonomy in the Internet.

On the other hand, introducing a management plane with
multiple incentive-driven brokers provides a not only powerful
but also practical mechanism to operate the multi-domain SD-
EONs that cover relatively large geographical areas. Specifi-
cally, the brokers offer services to the domain managers dueto
revenue profits and they may cooperate or compete with each
other to avoid the drawbacks of a single orchestrator. Mean-
while, the incentive-driven nature of brokers also prompts
them to apply more efficient provisioning schemes (e.g., pro-
viding services with lower costs and higher availabilities) and
more intelligent bidding strategies (e.g., pricing their services
more reasonably) so as to achieve higher revenue gains. This
forms revenue-driven rational games which are similar to
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the cases in other commercial markets, and hence improves
the performance of multi-domain service provisioning. Note
that, as each broker has the abstracted global status of the
multi-domain SD-EON, the competition/cooperation among
them would result in relatively short latency and there is no
need to worry about the convergence of routing calculation.
This is the fundamental difference between our work and
previous studies on game theory in the context of multi-domain
optical networks [13, 14]. Recently, in [3], we conducted a
preliminary study on how to assist the brokers in a multi-
broker based multi-domain SD-EON to realize revenue-driven
service provisioning, and formulated the competition among
the brokers as a noncooperative game. However, the theoretical
model in [3] was over-simplified, and thus the proposed
bidding strategy did not fully address the problem from the
perspective of the game theory.

In this paper, we extend our work in [3] to provide a
more comprehensive analysis on the revenue-driven service
provisioning framework in multi-broker based multi-domain
SD-EONs. We first extend the theoretical model of the network
operations to describe the noncooperative game among the
brokers, i.e., competing for inter-domain provisioning tasks
with only incomplete information on each other. Then, we
analyze the Nash equilibrium [15] in a simplified version of the
game, and show that in order to maximize the brokers’ profits
in long-term repeated games, we need to design an effective
bidding strategy with which the brokers can predict their
competitors’ behaviors and price their services in the optimal
way. The bidding strategy is designed by leveraging the kernel
density estimation scheme [16]. Finally, to demonstrate the
effectiveness of the proposed bidding strategy, we implement
it in an OpenFlow-based multi-domain SD-EON control plane
testbed. The experimental results indicate that the system
performs well and the brokers can obtain higher profits with
the proposed bidding strategy in repeated games.

The rest of the paper is organized as follows. Section II
surveys the related work briefly. We describe the theoretical
model for the network operations in multi-broker based multi-
domain SD-EONs in Section III. The proposed broker bidding
strategy is laid out in Section IV. Section V discusses the
system implementation for realizing the service provisioning
competition in multi-broker based multi-domain SD-EONs,
and the experimental results are presented and analyzed in
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

Previously, researchers have considered the service provi-
sioning in multi-domain SD-EONs and demonstrated a few
approaches to realize it [1–3, 11, 17–19]. Casellaset al. [17]
demonstrated to manage a multi-domain SD-EON with an
integrated path computation element (PCE) and OpenFlow
controllers. In [11, 18], we studied how to realize efficientand
collaborative resource allocation in OpenFlow-based multi-
domain SD-EONs by making the OpenFlow controllers (OF-
Cs) cooperate with each other in a peer-to-peer way. Note
that, the studies mentioned above only considered a flat
provisioning framework in which the domain managers (e.g.,

OF-Cs) operate in a purely distributed way for inter-domain
provisioning. However, due to the absence of centralized coor-
dination among the domain managers, the purely distributed
framework may result in relatively long protocol delay and
information inconsistency, which would limit the performance
on resource utilization and network scalability [20].

In order to address the issues with the flat provisioning
framework, Marconettet al. [19] proposed a hierarchical
framework by introducing a resource broker as the higher-
level orchestrator in the management plane and using it to
coordinate the domain managers for cross-domain network
orchestration. The authors improved their proposal in [1, 2],
and considered the multi-broker scenario, which was provento
be more realistic and robust, to realize revenue-driven cross-
domain network orchestration. Note that, as the brokers may
cooperate and/or compete with each other to maximize their
profits, we need to design the optimal gaming strategy for them
from the perspective of game theory. In [3], based on an over-
simplified theoretical model, we designed a bidding strategy
for the brokers to realize incentive-driven service provisioning.
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Fig. 1. Network architecture of a multi-broker based multi-domain SD-
EON, and the actions (a) from domain managers to brokers, (b)from brokers
to domain managers and (c) among brokers.

Game theory [15] has been widely used to optimize the
operations of various networks. In [21], the authors inves-
tigated the problem of spectrum pricing in cognitive radio
networks with a dynamic repeated game model, and proposed
gaming strategies to overcome the inefficiency brought by
Nash equilibrium. The cooperative spectrum sharing schemes
for cognitive radio networks were studied in [22], using a game
model in which each player only had incomplete information
about their competitors. Kabranovet al. [23] addressed the
routing and wavelength assignment (RWA) problem in fixed-
grid wavelength-division multiplexing (WDM) networks and
modeled it as a noncooperative game, in which multiple
network operators could compete for lightpath services. A
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strategy was developed for the operators to adjust the price
of wavelength resources adaptively. Under the assumption that
RWA could be executed in a distributed and noncooperative
way by each lightpath request, the authors of [24] modeled the
RWA problem as a strategy game and analyzed the difference
between the Nash equilibrium and the optimal solution.

The application of game theory in multi-domain optical
networks was first addressed in [13], where the authors mod-
eled the pricing of the advertised intra-domain information as
a non-cooperative game and discussed the Nash and Pareto
equilibrium for a few simple scenarios. However, neither
impairment-aware routing and spectrum assignment [25, 26]
nor the theoretical analysis on the Nash and Pareto equilib-
rium was presented. In [14], Guoet al. studied the game
between the operators and customers in multi-domain optical
networks, and by considering both the wavelength utilization
and customers’ satisfaction ratio on quality-of-transmission,
the authors investigated the Nash equilibrium between the
operators and customers and tried to improve their profits
simultaneously. Nevertheless, the unique features related to
multi-domain networks,e.g., setting up inter-domain lightpaths
cooperatively/noncooperatively, were not studied.

III. M ULTI -BROKER BASEDSERVICE PROVISIONING

FRAMEWORK IN MULTI -DOMAIN SD-EONS

A. Network Architecture

Fig. 1 shows a simplified schematic of the network archi-
tecture of a multi-broker based multi-domain SD-EON. The
control and management planes consist of several domain
managers (DMs) and multiple resource brokers. The NC&M of
the multi-domain SD-EON operates in a hierarchical manner.
In each domain, the DM controls the bandwidth-variable
optical cross-connects (BV-OXCs) through an SDN controller
(e.g., OpenFlow controller (OF-C)) for intra-domain service
provisioning. Meanwhile, it also subscribes to one or more
brokers for inter-domain service provisioning. Hence, the
brokers work as higher-level orchestrators to coordinate the
DMs for cross-domain network orchestration.

Fig. 1 also illustrates the interactions among the DMs and
brokers. According to the policies defined in their service-level
agreements (SLAs), the DMs virtualize their intra-domain
topologies for each broker, while the brokers help the DMs
to establish inter-domain lightpaths. Hence, to provisionan
inter-domain lightpath, each broker has an abstracted view
of the network, which includes the status of inter-domain
links and the intra-domain virtual topologies (ID-VTs) from
the DMs. An ID-VT consists of several border nodes (i.e.,
BV-OXCs) and the virtual links (VLs) in between them.
Specifically, the VLs are abstracted from the related intra-
domain path segments. Note that, depending on the SLAs
between them, a DM can submit different ID-VTs to different
brokers. Meanwhile, different brokers can apply differentinter-
domain service provisioning schemes and bidding strategies to
compete for the provisioning tasks.

B. Inter-Domain Service Provisioning Procedure

We useG = {Gi(Vi, Ei, BRi)} to model the multi-domain
SD-EON, wherei ∈ [1, N ] is the domain index,N is the

number of domains,Vi andEi are the sets of nodes and links1

in domainGi, respectively, andBRi is the set of brokers that
the DM inGi subscribes to.LR(s, d, B, T ) denotes an inter-
domain request, wheres andd are the source and destination
(i.e., s ∈ Vi, d ∈ Vj , i 6= j), B is the bandwidth requirement
in Gb/s, andT is the requested service duration.

Algorithm 1 shows the procedure to provisionLR. As
shown inLine 1, upon receiving an inter-domain requestLR,
the DM of the source domain (e.g., DM-i in domainGi)
forwards the request’s information to all the brokers that it
subscribes to. Then, each broker collects ID-VTs from all the
DMs, as shown inLine 4. Here, each ID-VT should consist
of the VLs of the related intra-domain path segments, which
are s to edge node(s), edge node(s) to edge node(s), and
edge node(s) tod for the source, intermediate and destination
domains, respectively. Meanwhile, all or some of the available
frequency slots (FS’s) on the path segments should also be
included in the ID-VT [11]. With the ID-VTs, each broker
calculates a provisioning scheme (i.e., a routing, modulation
and spectrum assignment (RMSA)) forLR in Line 5. If
a feasible provisioning scheme can be found, the broker
determines the price for it and submits the price to DM-i for
bidding the task of provisioningLR, as shown inLines 6-
9. Finally, in Lines 14-15, DM-i selects the broker with the
lowest price as the winner to provisionLR, and then, the
winning broker coordinates related DMs to set upLR.

Algorithm 1: Procedure for Provisioning Inter-Domain
Lightpaths Originating from DomainGi

1 for eachLR(s, d, B, T ), s ∈ Vi do
2 DM-i forwardsLR to all the brokers inBRi;

3 for each broker inBRi do
4 collect ID-VTs from all the DMs;

5 calculate a provisioning scheme forLR with the
acquired information;

6 if a feasible scheme can be obtainedthen
7 price the inter-domain provisioning scheme;

8 submit the price to DM-i for biddingLR;

9 end
10 end
11 if DM-i does not receive a bidthen
12 markLR as blocked;

13 else
14 DM-i selects the broker with the lowest price as

the winner to provisionLR;

15 winning broker coordinates related DMs to set up
the inter-domain lightpath forLR;

16 end
17 end

1Here,w.o.l.g., we assume that each inter-domain link belongs to one and
only one domain.
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C. Game Model for Broker Competition

The inter-domain provisioning procedure mentioned in the
previous subsection can be modeled as a noncooperative game,
in which the brokers are the player and their pricing strategies
for bidding the provisioning tasks are the game strategies.
Basically, after obtaining a provisioning scheme forLR, a
broker can price its service for the provisioning task as

C = T · (Ru · cR + Su · cS) · (1 + δ) = ζ · (1 + δ), (1)

whereRu andSu are the numbers of optical-to-electrical-to-
optical (O/E/O) regenerators and FS’s that need to be allocated
with the provisioning scheme,cR andcS are the unit costs for
regenerator and FS utilizations, respectively, andδ (δmax ≥
δ ≥ δmin) is the profit ratio with which the broker adjusts
its pricing strategy. Here, we assume that a broker will not
provision LR for free (i.e., δ = 0), and it has to secure a
minimum profit ratio ofδmin in each bid. Basically, if a broker
loses a bid, its profit is0, which is apparently better than
provisioningLR for free. Since game theory is based on the
principle that all the players are intelligent rational decision
makers [15], our assumption above is reasonable.

We denote the base cost ofBroker k due to regenerator
and spectrum utilization asζk. Then, with the prices from all
the subscribed brokers asC = {Ck, ∀k}, we can obtain the
expectation of the profit ofBroker k as

Uk (C) =
{

0, Ck > min(C),
ζk·δk

K̂
, otherwise,

(2)

whereK̂ is the number of the brokers whose bidding prices
are the minimum. Basically, in the situation that more than
one brokers offer the minimum price, the DM in the source
domain randomly selects one of them as the winner.

Apparently, the long-term operation of the multi-domain
SD-EON forms repeated games, and each broker can observe
all the historical actions of its competitors,i.e., their bidding
prices. Meanwhile, the broker is rational and thus should try to
maximize its profits in the long run through the repeat games.
Hence, the optimization objectives of the brokers are the same:

Maximize Uk (Cm) , ∀k,m, (3)

whereCm is the set of the brokers’ prices in them-th game.

D. Nash Equilibrium

To figure out the brokers’ pricing strategies, we need to
determine their best responses to each other’s strategies,i.e.,
finding the “mutual best responses” for the brokers, which
can be done by leveraging the concept of Nash equilibrium
[15]. We first consider a simplified version of the problem,
where for eachLR, all the brokers receive the identical ID-
VTs from the DMs and use the same RMSA algorithm to
calculate the inter-domain provisioning scheme. Hence, the
intra-domain provisioning schemes from the brokers should
be the same and their base costs (i.e., {ζk, k}) are also the
same. Then, the problem is transformed into a classic Bertrand
game [27] whose Nash equilibrium can be analyzed as follows.

It is known that the Nash equilibrium of a game is the
strategy profile in which no broker can increase its profit by

changing the strategy unilaterally [15], which can be obtained
by checking the best response function of each broker as

ψk (C−k) = argmax
Ck

{Uk (C)} , ∀k, (4)

where C−k is the set of the prices from all the subscribed
brokers except forBroker k, i.e., C−k = C \ {Ck}. Basically,
the best response function providesBrokerk the optimal price
to bid for the provisioning task, when the prices from all its
competitors are known. Hence, based on the discussion in the
previous subsection, we can easily obtain

ψk (C−k) = max {min(C−k)− θ, ζk · (1 + δmin)} , ∀k, (5)

whereθ > 0 is a very small constant.
Let C∗ = {C∗

k , ∀k} denote the Nash equilibrium of the
game. Then, by definition, we have

C∗
k = ψk

(
C∗
−k

)
, ∀k. (6)

In other words, the Nash equilibriumC∗ is the intersection of
the best response functionsψk(·) of all the subscribed brokers.

Lemma 1. C∗ = {ζk · (1 + δmin), ∀k} is the only Nash
equilibrium in the simplified game of broker competition.

Proof: First of all, as we know that the base costs of all
the brokers are the same, we defineζ = ζk, ∀k. Then, with Eq.
(5), it is easy to verify thatζ · (1+ δmin) is a feasible solution
of all the best response functions, which means thatC∗ =
{ζ · (1 + δmin), ∀k} is a Nash equilibrium in the simplified
game of broker competition. Next, we prove the uniqueness of
the Nash equilibrium by contradiction. We assume that there
exists another Nash equilibrium̃C∗. This actually means that
at least one broker (e.g., Brokerk) hasC̃∗

k = min
(
C̃∗
−k

)
−θ >

ζ · (1 + δmin), which leads to

ζ · (1 + δmin) < C̃∗
k < min

(
C̃∗
−k

)
. (7)

If we put the inequality in Eq. (7) into Eq. (5), we can get
C̃∗

h = C̃∗
k − θ < C̃∗

k for each Broker h (h 6= k). This,
however, is contradictory with the inequality in Eq. (7),i.e.,
C̃∗

k < min
(
C̃∗
−k

)
. Finally, we prove that{ζ · (1 + δmin), ∀k}

is the only Nash equilibrium in the game.
More specifically,Lemma 1 actually means that in the

simplified game of broker competition, the optimal pricing
strategy for each broker is to bid for the provisioning task
with the lowest possible price (i.e., ζ · (1 + δmin)). Under
such a situation, each broker is expected to get a profit of
ζ·δmin

K
, whereK is the number of all the subscribed brokers.

Apparently, this strategy will lead to a prisoners’ dilemma-like
situation [15], and is Pareto inefficient for the brokers.

In practice, the problem of broker competition that we are
trying to address is more sophisticated and the differences
are mainly two-fold. Firstly, we consider a more practical
scenario in which different brokers can receive different ID-
VTs for the same domain due to the various SLAs between
them and the DM. Therefore, the base costs from the brokers
(i.e., {ζk, k}) can be different and unknown to each other, and
the brokers can only compete with incomplete information on
their competitors. This makes it difficult for the brokers to
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analyze the Nash equilibrium exactly. Secondly, as multiple
inter-domain lightpath requests need to be served on-the-fly in
dynamic network provisioning, we need to address a sequence
of repeated games instead of a single one.

With these considerations, we design an effective bidding
strategy based on the kernel density estimation scheme [16],
which enables the brokers to predict their competitors’ be-
haviors and then price their services in the optimal way. The
strategy will be discussed in the next section, and in Section
VI, we will show that it makes the brokers more profitable
than the Nash equilibrium defined inLemma1.

IV. B ROKER BIDDING STRATEGY

In the repeated games on bidding for inter-domain pro-
visioning tasks, a broker should analyze all its competitors’
behaviors based on the information from historical games. We
define Cm

k as the price fromBroker k in the m-th game,
and Rm

k as the corresponding game result,i.e., Rm
k = 1

if Broker k wins them-th game, andRm
k = 0 otherwise.

We assume that there have beenM games since the system
starts, and each broker analyzes all its competitors’ behaviors
based on the information fromQ historical games,i.e., the
size of the prediction window isQ. Hence, we obtain an
integer setIk =

{
m : m ∈ [M −Q + 1,M ], Rm−1

k = RM
k

}

to represent the indices of all the historical games that are
used in the prediction. This means that in order to improve the
preciseness of the prediction, we only consider the historical
games whose immediately previous games provide the same
result toBrokerk as the most recent one (i.e., theM -th game).

Then, in the current game (i.e., the (M + 1)-th game), a
brokerk0 can estimate the probability density function (PDF)
of the price from another brokerk (k 6= k0) by employing the
Gaussian kernel density estimation (KDE) scheme developed
in [16], as

p̂k(x) =
∑

m∈Ik

ωm√
2π · σk

exp





(
x− ζM+1

k0

ζm
k0

· Cm
k

)2

−2σ2
k




, (8)

whereσk is the kernel width,ωm is the prediction weight such
that

∑
m∈Ik

ωm = 1, andζmk0
is the base cost fromBroker k0 in

them-th game. Basically, the estimated PDF is the weighted
summation of a series of Gaussian functions that are centered
at the corresponding historical prices. Since the base costs
from the brokers can vary due to the difference in provisioning
schemes and due to the fact thatBroker k0 is unaware of the
base cost fromBroker k in the current game, we normalize
the price fromBroker k in each previous game with the ratio
between the base costs of that game and the current one from

Brokerk0, i.e., using the term
ζ
M+1

k0

ζm
k0

·Cm
k in Eq. (8). We define

C̃m
k =

ζM+1
k0

ζmk0

· Cm
k . (9)

Fig. 2 shows an illustrative example on the Gaussian kernel
density estimation. For the five historical games that are used
in the prediction forBroker k, we have historical prices
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Fig. 2. An example for Gaussian kernel density estimation.

{C̃m
k } = {4.5, 5.0, 5.5, 8.0, 12.0}, σk = 1, and ωm = 0.2.

Then, the PDF is estimated with five Gaussian functions.
It is known that how to determine the kernel widthσk is

essential for obtaining a good PDF approximation with the
Gaussian kernel density estimation [16]. Letpk(x) be the
real PDF of the price fromBroker k, and with the cross-
validation method in [28], we can get the optimal value ofσk
by minimizing the integrated squared error (ISE) below

ISE(σk) =

∫
[p̂k(x)− pk(x)]

2dx

=

∫
p̂2k(x)dx − 2

∫
p̂k(x) · pk(x)dx +

∫
p2k(x)dx.

(10)

As
∫
p2k(x)dx is independent ofσk and

∫
p̂k(x) · pk(x)dx is

the expectation of̂pk(x), Eq. (10) can be rewritten as

f(σk) = ISE(σk)−
∫

p
2
k(x)dx =

∫
p̂
2
k(x)dx− 2E{p̂k(x)}.

(11)
Here,E{p̂k(x)} can be estimated by

E{p̂k(x)} ≈ 1

|Ik|
∑

m∈Ik

p̂k,−m(C̃m
k ), (12)

where the function̂pk,−m(·) has the expression of

p̂k,−m(x) =
1

1− ωm

∑

n∈Ik,n6=m

ωn√
2π · σk

exp






(
x− C̃n

k

)2

−2σ2
k





,

(13)
and it is the leave-one-out estimator [28]. Meanwhile,∫
p̂2k(x)dx can be calculated as

∫
p̂
2
k(x)dx =

∑

m∈Ik

∑

n∈Ik

ωm · ωn√
4π · σk

exp






(
C̃m

k − C̃n
k

)2

−4σ2
k





. (14)

By combining Eqs. (11)-(14), we getf(σk) as

f(σk) =
∑

m∈Ik

∑

n∈Ik

ωm · ωn√
4π · σk

exp






(
C̃m

k − C̃n
k

)2

−4σ2
k





−

∑

m∈Ik

∑

n∈Ik,n6=m

2ωn√
2πσk (1− ωm) |Ik|

exp






(
C̃m

k − C̃n
k

)2

−2σ2
k





.

(15)
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Hence, we can determine the optimal value ofσk as

σ∗
k = argmin {f(σk)} , ∀k. (16)

With Eqs. (8) and (15)-(16), we can estimate the PDF of the
price fromBrokerk precisely. Then, after having obtained the
PDFs of the prices from all of its competitors,Broker k0 can
determine the optimal bidding price for the current game (i.e.,
(CM+1

k0
)∗) by solving the following optimization problem

(CM+1

k0
)∗ = argmax

C





(
C − ζ

M+1

k0

) ∏

k 6=k0

(∫ ∞

C

p̂k(x)dx

)

 .

(17)
Basically,Broker k0 can win the game when and only when

all the other subscribed brokers offer higher prices than it.
Hence, Eq. (17) tries to maximize the expected profit ofBroker
k0. In order to solve Eq. (17) for(CM+1

k0
)∗, we can take the

logarithm of the term insideargmax
C

{·} and obtain

z(C) = log




(
C − ζ

M+1

k0

) ∏

k 6=k0

(∫ ∞

C

p̂k(x)dx

)


= log(C − ζ
M+1

k0
) +

∑

k 6=k0

log

∫ ∞

C

p̂k(x)dx.

(18)

Finally, the optimal bidding price(CM+1
k0

)∗ can be deter-

mined by checking the zero points ofdz(C)
dC , as

dz(C)

dC
=

1

C − ζM+1

k0

+
∑

k 6=k0

−p̂k(C)∫∞

C
p̂k(x)dx

=
1

C − ζM+1

k0

+
∑

k 6=k0

−p̂k(C)

1− ∑
m∈Ik

ωm · Φ
(

C−C̃m
k

σk

) ,
(19)

where the functionΦ(·) has the expression of

Φ(C) =

∫ C

−∞

1√
2π

exp

(
−x2

2

)
dx. (20)

V. NC&M SYSTEM IMPLEMENTATION

We implement the proposed multi-broker based incentive-
driven service provisioning framework in an OpenFlow-based
NC&M system for multi-domain SD-EONs. Basically, the
system utilizes the network architecture in Fig. 1, where the
DMs are realized with OpenFlow controllers (OF-C) based
on the POX platform [29] and the brokers are implemented
with our own software modules. Meanwhile, since this work
concentrates on the NC&M operations in multi-broker based
multi-domain SD-EONs, the optical switches are software-
emulated, each of which is programmed based on Open-
vSwitch [29] and runs on an independent Linux server.

Fig. 3(a) illustrates the operation principle of the multi-
domain SD-EON system, while each step of the procedure is
explained in details in Table I. Here, the OF-Cs communicates
with optical switches using the extended OpenFlow protocol
defined in [10], and we reuse thePacket In message to carry
the information of a lightpath request. In order to facilitate
cost-effective inter-domain service provisioning, each OF-C
provides ID-VTs to its subscribed brokers. Specifically, for

OF-C-1 OF-C-2

Domain 1 Domain 2

Broker A

1

2

3
3

4 4

5

6

8 8 8 8 8

1

2

4

5

6

7

8

9

10

3

Broker B2

7
7

(a)

1

d

c

10

Domain 1 Domain 2

(b)

4

5 7

6

c: 4-6

d: 5-7

Inter-Domain Link

a: 1-4

b: 1-3-5

f: 7-9-10 

e: 6-8-10 

Virtual Link 

Available FS

Fig. 3. Operation principle of multi-broker based multi-domain SD-EON
system, (a) working procedure and (b) ID-VT abstraction.

an inter-domain lightpath requestLR(s, d, B, T ), an ID-VT
includes the intra-domain information of the spectrum utiliza-
tions, hop counts, and physical lengths of the virtual links
(VLs), which are abstracted from the path segments that are
from s to egress nodes in the source domain, between ingress
nodes and egress nodes in intermediate domains, and from
ingress nodes tod in the destination domain. For example, in
Fig. 3(b), VL a and e correspond toPath Segments1-4 and
6-8-10 in Fig. 3(a), respectively. Then, each broker constructs
a virtual topologyG′ with the acquired information, and uses
G′ to calculate a RMSA solution for provisioningLR.

Here, we apply theK-shortest path routing and impairment-
aware RMSA scheme, and each broker decides the
modulation-formats to be used on the whole or partial candi-
date paths ofLR based on the quality-of-transmission (QoT)
[30]. More specifically, we assume each modulation-format
is related to a maximum transparent transmission reach and
the brokers will select the modulation-format with the highest
spectral efficiency under such constraint. Once the modulation-
format is determined, the number of required FS’sn can
be computed asn =

⌈
B

m·CBPSK
grid

⌉
, where CBPSK

grid is the

transmission capacity of an FS when it uses BPSK as the
modulation-format, andm = 1, 2, 3 and 4 represents the
modulation-levels of BPSK, QPSK,8-QAM and 16-QAM,
respectively. Meanwhile, we assume that O/E/O regenerators
can be used on the border nodes between domains, when
a spectrum conversion has to be performed or a lightpath
does not even satisfy the QoT requirement of the lowest
modulation-level (i.e., BPSK). Finally, each broker performs
spectrum assignment with the specified scheme on the can-
didate paths and select the one with the lowest base cost as
the RMSA solution. To realize the procedure in Table I, we
leverage the inter-domain protocol (IDP) that we designed
in [11, 18] to facilitate the communications between the
brokers and OF-Cs, and Fig. 4 shows the formats of the
messages used in the IDP. Basically, we incorporate some
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Fig. 4. Messages designed for the inter-domain protocol (IDP).

minor extensions to the IDP and make it adapt to the multi-
broker scenario. Meanwhile, we hope to point out that the
communications between the brokers and OF-Cs can also be
realized by extending the existing path computation element
communication protocol (PCEP) discussed in [31, 32], as it
also considers the economic aspects of multi-domain SD-
EONs. In our future work, we will study how to treat our
IDP design as a new extension in PCEP.

TABLE I
OPERATIONPRINCIPLE OFMULTI -BROKER BASEDMULTI -DOMAIN

SD-EON SYSTEM

Step 1: An inter-domain lightpath requestLR(s =
1, d = 10, B, T ) arrives at the OF-C of its source domain
(i.e., OF-C-1) through aPacket In message.
Step 2: OF-C-1 forwardsLR’s information to all its sub-
scribed brokers withInter Domain Requestmessages.
Steps 3and4: Upon receiving the information onLR,
each broker interacts with OF-Cs usingStatusRequest
andStatusReplymessages for getting ID-VTs.
Step 5: Each broker performs RMSA forLR, calculates
the price for its provisioning service with Eqs. (8)-(20)2,
and returns the price to the source domain’s OF-C (i.e.,
OF-C-1) using aProvision Requestmessage.
Step 6: After obtaining the prices from all the brokers,
OF-C-1 selects the broker that offers the lowest price
as the winner and commits its provisioning task with a
Provision Replymessage.
Step 7: The winning broker distributes the inter-domain
provisioning scheme that it calculated before to each
related OF-C using anInter Domain Replymessage.
Step 8: Each OF-C sets up the lightpath segment in its
domain accordingly, by sending aFlow Mod message
to each related optical switch, and finally,LR is provi-
sioned successfully.

VI. EXPERIMENTAL RESULTS

We conduct inter-domain service provisioning experiments
in the multi-broker based multi-domain SD-EON testbed,

2Note that, according to the rational assumption in game theory, the brokers
should apply the bidding strategy to maximize their profits.Hence, we make
the brokers use our proposed bidding strategy as it is the most effective one
we have found so far. By doing so, we respect the rationality assumption in
game theory and also realize a relatively fair comparison.
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Fig. 5. Network topology of experimental testbed.

which includes two domains and each of the DMs subscribes
to two brokers. Fig. 5 shows the network topology used in the
experimental testbed. We assume that the network operates
in the C-band and hence each fiber can accommodate358
FS’s, each of which has a bandwidth of12.5 GHz, i.e.,
CBPSK

grid = 12.5 Gb/s. The maximum number of O/E/O
regenerators on each border node is set as50. The lightpath
requests are generated dynamically according to the Poisson
traffic model, with their source and destination nodes randomly
selected. This means that a lightpath request can use any node
in the topology as its source and destination, while its spectrum
assignment can only be changed on intermediate border nodes
with O/E/O regenerations. We apply this constraint to ensure
that the additional operational cost and energy consumption
due to O/E/O regenerations can be controlled well. The
bandwidth requirements follow a uniform distribution within
[25, 500] Gb/s. The unit costs for using an FS and a regenerator
per provision period are set ascS = 1 and cR = 5 units,
respectively. Note that, since this work focuses on inter-
domain service provisioning, we only collect experimental
results related to inter-domain lightpath requests.

Meanwhile, we assume that based on their SLAs, the two
brokers gets different ID-VTs from each DM. Specifically,
for Broker 1, each DM abstracts the ID-VTs by calculating
the path segments (i.e., VLs) with shortest-path routing, and
thus we referBroker 1 as Broker-SP in this section. On the
other hand, forBroker 2, the DMs calculate VLs as the path
segments that have the maximum available FS’s, and hence
Broker 2 is named as Broker-LB. Note that, after obtaining
the ID-VTs from the DMs, each broker tries to provision an
inter-domain lightpath request with three RMSA algorithms,
i.e.,K-shortest path and first-fit (KSP-FF) [7],K-shortest path
and load-balancing (KSP-LB) [33], and fragmentation-aware
RMSA (FA) [34], and uses the provisioning scheme that has
the lowest base cost in the bidding for the provisioning task.

A. One-Time Provisioning with Multiple Brokers

We first perform an experiment on one-time service pro-
visioning with multiple brokers to verify that the proposed
system can operate correctly. Fig. 6 shows the message list
captured on an OF-C for setting up an inter-domain lightpath
from Node 2 to Node 20. It can be seen that the system
works exactly according to our design,i.e., Brokers 1 and
2 compete for the provisioning task andBroker 1 finally
wins the game. The whole process only takes around42
msec. Fig. 7 shows the wireshark captures of theStatusReply
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Fig. 7. Wireshark captures of (a)Status Replyand (b)Inter Domain Reply
messages.

(i.e., from OF-C-1 to Broker1) andInter Domain Reply(i.e.,
from Broker 1 to OF-C-1) messages used in the experiment.
We observe that OF-C-1 abstracts an ID-VT to report the
information of three VLs (i.e., 2-6, 2-6-9 and2-3-5-8-10), such
as their path lengths, hop counts and spectrum utilizations,
in the StatusReplymessage toBroker 1. While afterBroker
1 winning the game, it instructs OF-C-1 to use the first
VL to set up the path segment within its domain with the
assigned spectra as the FS-block[64, 75] and the selected
modulation-format as BPSK. Meanwhile,Broker 1 provides
the modulation and spectrum assignments on the inter-domain
link to OF-C-1, which is the same as that on the preceding
intra-domain segment. Hence, the inter-domain lightpath is set
up transparently from withinDomain 1 to Domain 2, and
there is no need to allocate an O/E/O regenerator on the
corresponding border node (i.e., Node6).

B. Dynamic Service Provisioning with Repeated Games

We conduct experiments on dynamic service provisioning
with repeated games first to verify the effectiveness of the
proposed multi-broker based multi-domain SD-EON architec-
ture when compared with the single-broker based scheme in
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Fig. 8. Request blocking probabilities from single- and multi-broker based
scenarios.

[19]. Here, the multi-broker based scheme uses our designed
bidding strategy. We setδmin = 0.1, δmax = 1, the size of
the prediction window asQ = 300, and the prediction weights
as ωm = 2m

Q·(1+Q) , i.e., the weights of the historical prices
increase linearly withm (the index of a historical game).

Fig. 8 shows the results on request blocking probability.
It is interesting to notice that the multi-broker based scheme
achieves lower blocking probability than the single-broker
based schemes, which can be explained as follows. Basically,
in the multi-broker based scheme, an “optimal” provisioning
scheme is determined for each request through the competition
of the brokers,i.e., the source DMs have the option of
choosing the provisioning schemes with the lowest prices.
Hence, the overall network resource utilization is arranged
with high efficiency. However, this is not possible in the
single-broker based scheme. Therefore, the multi-broker based
scheme can outperform the single-broker based schemes in
terms of blocking probability.

We then compare the performance of the proposed broker
bidding strategy to that implied by the Nash equilibrium
obtained in Section III-D. Here, we name the scenario in
which both brokers operate according to the Nash equilibrium
as Nash-Game, where the brokers always submit the lowest
possible price to bid for the provisioning tasks. Our proposed
bidding strategy is referred as KDE-Game. Fig. 9(a) shows
the results on total broker profits versus traffic loads, and it
can be seen that KDE-Game always achieves much higher
profit than Nash-Game. This is because with our proposed
bidding strategy, the brokers can predict the behaviors of their
competitors and then adjust their profit ratios intelligently for
maximizing their profits. This can be verified with the results
in Fig. 9(b), which samples the evolution of the bidding prices
from the brokers in KDE-Game. We can see that Broker-LB
decreases its profit ratioδ from 0.4978 to 0.4933 when it has
lost the second game, and then it wins the third game.

To study KDE-Game further, we also plot the profits of
Broker-SP and Broker-LB, which obtain different intra-domain
information from the OF-Cs, in Fig. 10. It can be seen that
Broker-SP outperforms Broker-LB all the time, for the reason
that it calculates provisioning schemes with lower base costs
by using the shorter VLs from OF-Cs. Therefore, it holds
advantage in the game. We also observe that the advantage
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from Broker-SP over Broker-LB gets smaller when the traffic
load increases. This is because by using the VLs that carry
more available FS’s, Broker-LB can potentially provision more
requests than Broker-SP in a more congested network.

Finally, we conduct experiments in which the brokers can
use different values ofQ (i.e., the size of the prediction
window), and investigate the impact ofQ on the brokers’
profits. The results are summarized in Table II. Here, we
only show the results with the traffic load as450 Erlangs,
but have verified that the results under different traffic loads
exhibit the similar trend. It is interesting to notice that the
profit of each broker tends to decrease with the increase of
Q. This is because with a largerQ, a broker can acquire
a more accurate estimation on its competitor’s behavior and
its competitor has no choice but to reduce the bidding prices
to ensure certain profit gain, which would squeeze the profit

ratios achieved by both brokers. Basically, as both brokers
leverage the KDE-based bidding strategy, the decisions made
by them impact the profits of each other mutually, which
means that the broker in turn would have to reduce its profit
ratios to maintain competitiveness in the game. However, these
results would not necessarily suggest that using a smallerQ

would make a broker more profitable in any case. This is
because in a practical scenario, some brokers may apply other
bidding strategies or even change their strategies dynamically.
Hence, letting a broker use a relatively largeQ (e.g.,Q = 300)
can make sure that it can possess sufficient cognition on its
competitors’ behaviors. Meanwhile, how to decide the value
of Q in different network scenarios is still an open question
to us, and we will study it in our future work.

VII. C ONCLUSION

This paper studied the incentive-driven service provision-
ing in multi-broker based multi-domain SD-EONs. We first
presented the theoretical model of the network operations
to describe the noncooperative game in which the brokers
compete for inter-domain provisioning tasks with only incom-
plete information on their competitors. Then, we analyzed the
Nash equilibrium in a simplified version of the game, and
showed that to maximize the brokers’ profits in long-term
repeated games, an effective bidding strategy is needed forthe
brokers to predict their competitors’ behaviors and price their
services in the optimal way. We designed the bidding strategy
by leveraging the kernel density estimation scheme. Finally,
to demonstrate the effectiveness of our bidding strategy, we
implemented it in an OpenFlow-based multi-domain SD-EON
control plane testbed. Our experimental results verified that
the system performs well and the brokers can obtain higher
profits with the proposed bidding strategy in repeated games.
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