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Abstract—It is known that the multi-broker based management
plane can potentially provide a realistic solution to faciltate
incentive-driven cross-domain network orchestration in nulti-
domain software-defined elastic optical networks (SD-EONs
Such network orchestration assures the autonomy of each daam
and supports economical service provisioning across mutile
domains as well. In this work, we consider the economic priniple
in multi-broker based multi-domain SD-EONs and study how to
realize incentive-driven service provisioning with broke compe-
titions. We first present the theoretical model of the netwok

operations to describe the noncooperative game in which the

brokers compete for inter-domain provisioning tasks with aly

incomplete information on their competitors. Then, we anayze
the Nash equilibrium in a simplified version of the game, and
show that to maximize the brokers’ profits in long-term repeaed

games, an effective bidding strategy is needed for the broke to

predict their competitors’ behaviors and price their services in
the optimal way. The bidding strategy is designed by leverdgg

the kernel density estimation scheme. Finally, to demonsate the
effectiveness of the proposed bidding strategy, we implemegit in

an OpenFlow-based multi-domain SD-EON control plane tested.
The experimental results verify that our system performs wé

and the brokers can obtain higher profits with the proposed
bidding strategy in repeated games.

Index Terms—Software-defined elastic optical networks (SD-
EONSs), Multi-broker, Noncooperative game, Nash Equilibrum.

I. INTRODUCTION

also been experimentally demonstrated in small scale-inter
continental multi-domain software-defined networks (SPNs
[3]. Although the management plane with incentive-driven
brokers can be effective in orchestrating heterogeneous, AS
i.e., heterogeneous in terms of physical-layer technoleyy, (
wireless, wireline, optical and satellite), and in terms of
network protocols and programmability [4, 5], its advamtag
in multi-domain software-defined elastic optical netwai&B-
EONSs) would potentially be more distinct.

SD-EONs combine the advantages from the programmaubili-
ty of SDNs and those from the efficient and flexible utilizatio
of Th/s network capacity by elastic optical networks (EQNSs)
Specifically, EONs support super-channel and sub-wavéieng
switching with flexible spectrum allocation across a seoks
spectrally-contiguous frequency slots (FS's), and leyerad-
vanced transmission techniques to optimize spectral effoyi
[6, 7]. Meanwhile, SDN incorporates programmable central-
ized NC&M to undertake sophisticated spectrum management
within a domain (or AS) [8-10]. As a result, SD-EONs can
potentially realize adaptive, programmable, and appboat
aware ultra-high capacity networking with enhanced servic
support [11, 12]. Now, what is important is to design the
NC&M architecture for facilitating efficient end-to-endrse
vice provisioning across multiple SD-EON domains, such
that the distributed resources can be utilized effectivéty
achieve this, we can use the hierarchical NC&M architecture

NCENTIVE-driven brokers can promote higher perforthat places an orchestrator on top of the domain managers.

mance, better resilience, and more efficient resourceatili Unfortunately, this means that the orchestrator can dictat
tion in the future Internet that consists of many autonomowse entire multi-domain network, which is impractical when
systems (AS’s). Specifically, they are positioned in a highéhe domains are from different operators, causes sunligabi
network control and management (NC&M) level than thgnd scalability issues, and also violates the original (and
domain managers of AS’s for coordinating the cross-domadiccessful) principle of autonomy in the Internet.
operation. Since multiple brokers can compete/cooperte t On the other hand, introducing a management plane with
realize cross-domain service provisioning, they resphet tmultiple incentive-driven brokers provides a not only poiuk
autonomy of each AS without dictating the top-down auput also practical mechanism to operate the multi-domain SD

thoritative management [1]. Indeed, recent architectstiady

EONSs that cover relatively large geographical areas. $peci

has shoyvn the_rgmarkable eﬁgctiveness of inceptive—driveally, the brokers offer services to the domain managersaue
brokers in providing lower service latency and higher netevenue profits and they may cooperate or compete with each

work throughput and availability [2], and the architectinges
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other to avoid the drawbacks of a single orchestrator. Mean-
while, the incentive-driven nature of brokers also prompts
them to apply more efficient provisioning schemesy( pro-
viding services with lower costs and higher availabilitiaad
more intelligent bidding strategies.(, pricing their services
more reasonably) so as to achieve higher revenue gains. This
forms revenue-driven rational games which are similar to



the cases in other commercial markets, and hence impro@s-Cs) operate in a purely distributed way for inter-domain
the performance of multi-domain service provisioning. &otprovisioning. However, due to the absence of centralized-co
that, as each broker has the abstracted global status of direation among the domain managers, the purely distributed
multi-domain SD-EON, the competition/cooperation amonfgamework may result in relatively long protocol delay and
them would result in relatively short latency and there is niaformation inconsistency, which would limit the perfornee
need to worry about the convergence of routing calculatioon resource utilization and network scalability [20].
This is the fundamental difference between our work andIn order to address the issues with the flat provisioning
previous studies on game theory in the context of multi-damaramework, Marconettet al. [19] proposed a hierarchical
optical networks [13, 14]. Recently, in [3], we conducted &amework by introducing a resource broker as the higher-
preliminary study on how to assist the brokers in a multlevel orchestrator in the management plane and using it to
broker based multi-domain SD-EON to realize revenue-driveoordinate the domain managers for cross-domain network
service provisioning, and formulated the competition agororchestration. The authors improved their proposal in |1, 2
the brokers as a noncooperative game. However, the theslretand considered the multi-broker scenario, which was préwen
model in [3] was over-simplified, and thus the proposeoe more realistic and robust, to realize revenue-drivesszro
bidding strategy did not fully address the problem from théomain network orchestration. Note that, as the brokers may
perspective of the game theory. cooperate and/or compete with each other to maximize their
In this paper, we extend our work in [3] to provide grofits, we need to design the optimal gaming strategy fanthe
more comprehensive analysis on the revenue-driven servigam the perspective of game theory. In [3], based on an over-
provisioning framework in multi-broker based multi-domai simplified theoretical model, we designed a bidding stnateg
SD-EONSs. We first extend the theoretical model of the netwof@r the brokers to realize incentive-driven service primnigg.
operations to describe the noncooperative game among the
brokers,i.e., competing for inter-domain provisioning tasks
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I ]
with only incomplete information on each other. Then, we {[ Bidding  Service Level Bidding  Service Level | |
analyze the Nash equilibrium [15] in a simplified versiontus t j|(Stmeas CAgeement || (StEteay]) [Agreement ] |
game, and show that in order to maximize the brokers’ profits || inerboman q.qic Proveione Saheme Broker k[
in long-term repeated games, we need to design an effective  \ ,/"
bidding strategy with which the brokers can predict their ‘ Inter-Domain Protocol ‘
competitors’ behaviors and price their services in therogti " Control Plane

way. The bidding strategy is designed by leveraging theédern e APP: .. APP APP: .. APP ||
density estimation scheme [16]. Finally, to demonstrate th E[SDN Comm"e,} [SDN C(,m,o”er} [SDN Controller}i
effectiveness of the proposed bidding strategy, we impigme { {Domain Manager 1 Domain Manager 2 D

it in an OpenFlow-based multi-domain SD-EON control plane SDN Control Protocol ‘

testbed. The experimental results indicate that the system . sispiaes

omain Manager N

performs well and the brokers can obtain higher profits with |_a|cﬁ\ xp (%t ?} x—(x]
the proposed bidding strategy in repeated games. i L|J T\\@/ |
The rest of the paper is organized as follows. Section Il | g NG ()
surveys the related work briefly. We describe the theoretica ~ *-----Domain -~ Domain2 : DomainNms’
model for the network operations in multi-broker based mult SwemtiDVTs o P'c;;::g;r;g;igg;gsﬁ e P
domain SD-EONS in Section Ill. The proposed broker bidding ™ - b b B =0
strategy is laid out in Section V. Section V discusses the Manager Broker Broker o | MamegerBroker o Broker

system implementation for realizing the service provisign

competition in multi-broker based multi-domain SD-EONs;ig. 1. Network architecture of a multi-broker based mdtimain SD-

and the experlmental results are presented and anaerc!E(ﬂI\\l and the actions (a) from domain managers to brokerdrdby) brokers
domain managers and (c) among brokers.

Section VI. Finally, Section VII summarizes the paper.

Game theory [15] has been widely used to optimize the
operations of various networks. In [21], the authors inves-
Previously, researchers have considered the service-prdigated the problem of spectrum pricing in cognitive radio
sioning in multi-domain SD-EONs and demonstrated a femetworks with a dynamic repeated game model, and proposed
approaches to realize it [1-3, 11, 17-19]. Case#iaal. [17] gaming strategies to overcome the inefficiency brought by
demonstrated to manage a multi-domain SD-EON with dwash equilibrium. The cooperative spectrum sharing sckeme

integrated path computation element (PCE) and OpenFldar cognitive radio networks were studied in [22], using aga
controllers. In [11, 18], we studied how to realize efficiand model in which each player only had incomplete information
collaborative resource allocation in OpenFlow-based imulabout their competitors. Kabranat al. [23] addressed the
domain SD-EONs by making the OpenFlow controllers (OFeuting and wavelength assignment (RWA) problem in fixed-
Cs) cooperate with each other in a peer-to-peer way. Na@gd wavelength-division multiplexing (WDM) networks and
that, the studies mentioned above only considered a flabdeled it as a noncooperative game, in which multiple
provisioning framework in which the domain managezgy( network operators could compete for lightpath services. A

II. RELATED WORK



strategy was developed for the operators to adjust the primember of domainsy; and E; are the sets of nodes and links
of wavelength resources adaptively. Under the assumpgtiamn tin domainG;, respectively, and3 R; is the set of brokers that
RWA could be executed in a distributed and noncooperatittee DM in G; subscribes toLR(s,d, B,T) denotes an inter-
way by each lightpath request, the authors of [24] modeled tHomain request, whereandd are the source and destination
RWA problem as a strategy game and analyzed the differer(ce., s € V;,d € Vj,i # j), B is the bandwidth requirement
between the Nash equilibrium and the optimal solution.  in Gb/s, andl" is the requested service duration.

The application of game theory in multi-domain optical Algorithm 1 shows the procedure to provisiabR. As
networks was first addressed in [13], where the authors magiown inLine 1, upon receiving an inter-domain requésg,
eled the pricing of the advertised intra-domain informats he DM of the source domaine(g, DM-i in domain G;)
a non-cooperative game and discussed the Nash and Pafgi@ards the request's information to all the brokers that i
equilibrium for a few simple scenarios. However, neithegpscribes to. Then, each broker collects ID-VTs from @l th
impairment-aware routing and spectrum assignment [25, 2§}1s, as shown irLine 4. Here, each ID-VT should consist
nor the theoretical analysis on the Nash and Pareto equilfthe VLs of the related intra-domain path segments, which
rium was presented. In [14], Guet al. studied the game gre 5 to edge node(s), edge node(s) to edge node(s), and
between the operators and customers in multi-domain dptiggige node(s) td for the source, intermediate and destination
networks, and by considering both the wavelength utilerati yomains, respectively. Meanwhile, all or some of the abédla
and customers’ satisfaction ratio on quality-of-transiais, frequency slots (FS's) on the path segments should also be
the authors investigated the Nash equilibrium between th&juded in the ID-VT [11]. With the ID-VTs, each broker
operators and customers and tried to improve their profggg|culates a provisioning schemiee( a routing, modulation
simultaneously. Nevertheless, the unique features ckelde gng spectrum assignment (RMSA)) fdrR in Line 5. If
multi-domain networkse.g, setting up inter-domain lightpathsy feasible provisioning scheme can be found, the broker
cooperatively/noncooperatively, were not studied. determines the price for it and submits the price to Do
bidding the task of provisionind R, as shown inLines 6-
FRAMEWORK IN MULTI-DOMAIN SD-EONs 0. Finally,. in Lines 14-1_5, DM-i selec_:t; the broker with the

lowest price as the winner to provisiobhR, and then, the

A. Network Architecture winning broker coordinates related DMs to set UR.

Fig. 1 shows a simplified schematic of the network archi-
tecture of a multi-broker based multi-domain SD-EON. The
control and management planes consist of several domafgorithm 1: Procedure for Provisioning Inter-Domain
managers (DMs) and multiple resource brokers. The NC&M ot.ightpaths Originating from Domaify;
In_oach domain, the DM conrols the bandvicth-varianip ' S3ChER(s. B 7). < V; do

. ' ) DM-; forwardsLR to all the brokers inBR;;
optical cross-connects (BV-OXCs) through an SDN controlle » forwards R S InBft

for each broker inBR; do

(e.g, OpenFlow controller (OF-C)) for intra-domain service®

[11. M ULTI-BROKER BASEDSERVICE PROVISIONING

provisioning. Meanwhile, it also subscribes to one or moré collect ID-VTs from all the DMs;
brokers for inter-domain service provisioning. Hence, the calculate a provisioning scheme féirz with the
brokers work as higher-level orchestrators to coordinaee t acquired information;
DMs for cross-domain network orchestration. 6 if a feasible scheme can be obtaintbeén

Fig. 1 also illustrates the interactions among the DMs and price the inter-domain provisioning scheme;
brokers. According to the policies defined in their serndeel 4 submit the price to DM for bidding LR;
agreements (SLAs), the DMs virtualize their intra-domain end
topologies for each broker, while the brokers help the DMs end

to establish inter-domain lightpaths. Hence, to provision © | ' _ .
inter-domain lightpath, each broker has an abstracted vitw | if DM-i does not receive a bithen

of the network, which includes the status of inter-domald | mark LR as blocked;

links and the intra-domain virtual topologies (ID-VTS) ifino 13 else

the DMs. An ID-VT consists of several border nodee.( 14 DM-i selects the broker with the lowest price as
BV-OXCs) and the virtual links (VLs) in between them. the winner to provisiorL R;

Specifically, the VLs are abstracted from the related intra- winning broker coordinates related DMs to set up
domain path segments. Note that, depending on the SLAs the inter-domain lightpath foE R;

between them, a DM can submit different ID-VTs to differen end

brokers. Meanwhile, different brokers can apply differieiér- end

domain service provisioning schemes and bidding straete!;gie17
compete for the provisioning tasks.

B. Inter-Domain Service Provisioning Procedure

We useG = {Gi(Vi, Ei, BR;)} to model the multi-domain  1piere w0.1.g, we assume that each inter-domain link belongs to one and
SD-EON, wherei € [1,N] is the domain index)N is the only one domain.



C. Game Model for Broker Competition changing the strategy unilaterally [15], which can be oisédli

The inter-domain provisioning procedure mentioned in tH&Y checking the best response function of each broker as
previous subsection can be modeled as a noncooperative game Vi (C_p) = argmax {Uy (C)}, V&, 4)
in which the brokers are the player and their pricing striateg C
for bidding the provisioning tasks are the game strategi&ghere C_, is the set of the prices from all the subscribed
Basically, after obtaining a provisioning scheme bR, a brokers except foBroker k, i.e., C_; = C \ {C}}. Basically,
broker can price its service for the provisioning task as  the best response function provid@®ker & the optimal price
7. ) ) ) _ . to bid for the provisioning task, when the prices from all its
C=T (Bu-crtSu-cs) (149)=¢-(1+9), (1) competitors are known. Hence, based on the discussion in the
where R, and S, are the numbers of optical-to-electrical-toprevious subsection, we can easily obtain
optical (O/E/O) regenerators and FS’s that need to be aédca )
with the provisioning schemeg andcg are the unit costs for Yr (Cx) = max {min(C_) — 0, G - (1 + Omin)}, Yk, (5)
regenerator and FS utilizations, respectively, an@,, ., > whered > 0 is a very small constant.
0 > dmin) IS the profit ratio with which the broker adjusts Let C* = {C},vk} denote the Nash equilibrium of the
its pricing strategy. Here, we assume that a broker will ”B%lme. Then, by definition, we have
provision LR for free (.e, § = 0), and it has to secure a
minimum profit ratio ofs,;,, in each bid. Basically, if a broker Cr =i (Cy), VEk. (6)
loses a bid, its profit i9), which is apparently better than
provisioning LR for free. Since game theory is based on th
principle that all the players are intelligent rational ide&m
makers [15], our assumption above is reasonable. Lemma 1. C* = {Ct (14 0min), Yk} is the only Nash
We denote the base cost Bfoker k£ due to regenerator equilibrium in the simplified game of broker competition.
and spectrum utilization ag,. Then, with the prices from all
the subscribed brokers &= {C},Vk}, we can obtain the
expectation of the profit oBroker & as

In other words, the Nash equilibriug is the intersection of
the best response functiotig(-) of all the subscribed brokers.

Proof: First of all, as we know that the base costs of all
the brokers are the same, we define (i, Vk. Then, with Eq.
(5), it is easy to verify that - (1 + d,nin) is a feasible solution
Uy (C) = { ; Q(; C > min(C), (2) Of all the best response functions, which means that=
sk, otherwise {¢- (14 6min), VEk} is a Nash equilibrium in the simplified
. - ._game of broker competition. Next, we prove the uniqueness of
where X is the number of the brokers whose bidding prlc%e Nash equilibrium by contradiction. We assume that there

are the minimum. Baspal_ly, n th? situation th_at more that[.&ists another Nash equilibriud?. This actually means that
one brokers offer the minimum price, the DM in the source

domain randomly selects one of them as the winner. atleast one broke.e(g, Brokerk) hasCy; = min (ka) —0>
Apparently, the long-term operation of the multi-domaif * (1 +9min), Which leads to

SD-EON forms repeated games, and each broker can observe . s (A%

all the historical actions of its competitorise., their bidding €+ (14 Omin) < G < min (C‘k) ' (7)

maximize its profits in the long run through the repeat game@*;; — C; — 0 < C; for eachBroker h (h # k). This,
Hence, the optimization objectives of the brokers are theesa however, is contradictory with the inequality in Eq. (7.,

Maximize Uy (Cn), Vk,m, (3) Cf <min (Cik). Finally, we prove tha{¢ - (1 + dpmin), Yk}

is the only Nash equilibrium in the game. ]
More specifically, Lemmal actually means that in the

simplified game of broker competition, the optimal pricing

D. Nash Equilibrium strategy for each broker is to bid for the provisioning task
To figure out the brokers’ pricing strategies, we need twith the lowest possible pricei.€., ¢ - (1 4+ dmin)). Under

determine their best responses to each other’s strategies, such a situation, each broker is expected to get a profit of

finding the “mutual best responses” for the brokers, Whicﬁ%, where K is the number of all the subscribed brokers.

can be done by leveraging the concept of Nash equilibrivApparently, this strategy will lead to a prisoners’ dilemiike

[15]. We first consider a simplified version of the problensituation [15], and is Pareto inefficient for the brokers.

where for eachL R, all the brokers receive the identical ID- In practice, the problem of broker competition that we are

VTs from the DMs and use the same RMSA algorithm ttrying to address is more sophisticated and the differences

calculate the inter-domain provisioning scheme. Hence, thre mainly two-fold. Firstly, we consider a more practical

intra-domain provisioning schemes from the brokers shoutdenario in which different brokers can receive differddi |

be the same and their base costs.({(;, k}) are also the VTs for the same domain due to the various SLAs between

same. Then, the problem is transformed into a classic Bettrahem and the DM. Therefore, the base costs from the brokers

game [27] whose Nash equilibrium can be analyzed as followse., {(x, k}) can be different and unknown to each other, and
It is known that the Nash equilibrium of a game is théhe brokers can only compete with incomplete information on

strategy profile in which no broker can increase its profit biyneir competitors. This makes it difficult for the brokers to

where(C,, is the set of the brokers’ prices in the-th game.



analyze the Nash equilibrium exactly. Secondly, as muatipl 0.25

inter-domain lightpath requests need to be served on-yhe-fl
dynamic network provisioning, we need to address a sequence 0.2 !
of repeated games instead of a single one. U
With these considerations, we design an effective bidding & 015 ax
strategy based on the kernel density estimation scheme [16] g o
which enables the brokers to predict their competitors’ be- £ o1 o
haviors and then price their services in the optimal way. The v oo :
strategy will be discussed in the next section, and in Sectio 005
VI, we will show that it makes the brokers more profitable 0 45!'55 '8 112
than the Nash equilibrium defined iremmal. ° 0 Bidding P5rice (Unit) 10 1
IV. BROKERBIDDING STRATEGY Fig. 2. An example for Gaussian kernel density estimation.

In the repeated games on bidding for inter-domain pro-
visioning tasks, a broker should analyze all its compeditor
behaviors based on the information from historical games. WC™} = {4.5,5.0,5.5,8.0,12.0}, o, = 1, andw,, = 0.2.
define C}" as the price fromBroker k in the m-th game, Then, the PDF is estimated with five Gaussian functions.
and R}* as the corresponding game resile, R} = 1 It is known that how to determine the kernel widif is
if Broker k& wins the m-th game, andR}' = 0 otherwise. essential for obtaining a good PDF approximation with the
We assume that there have bekhgames since the systemGaussian kernel density estimation [16]. Lgt(z) be the
starts, and each broker analyzes all its competitors’ bef&v real PDF of the price fronBroker k, and with the cross-
based on the information fror@ historical gamesi.e., the validation method in [28], we can get the optimal valuergf
size of the prediction window i%). Hence, we obtain an by minimizing the integrated squared error (ISE) below
integer seZ, = {m:m e [M —Q+1,M], R} ' =RM}
to represent the indices of all the hlstorlcal games that arelSE (o)) = /[ﬁk(x) — pr(x)]*da

used in the prediction. This means that in order to improee th (10)
preciseness of the prediction, we only consider the hisibri = /ﬁﬁ(:p)dg: - Z/ﬁk(:c) - pr(x)de + /pi(a:)d:c.
games whose immediately previous games provide the same

result toBroker k as the most recent oneg(, the M/-th game). As [ p?(x)dz is independent o, and [ pi(z) - py(z)dx is

Then, in the current game.€., the (M + 1)-th game), a the expectatlon opx(z), Eqg. (10) can be rewrltten as
brokerk, can estimate the probability density function (PDF)
of the price from another brokeér (k # ko) by employing the  f(ox) = ISE(ok) — /pi(m)dx = /ﬁi(m)dx — 2E{pk(z)}.

Gaussian kernel density estimation (KDE) scheme developed (12)
in [16], as Here, E{p;(z)} can be estimated by
CM+1 m ?
(x — % ) E{pr(x ~ T Z Pr.—m(CF), (12)
Z exp = ’ (8) meIk
mezy v 2” Tk %% where the functionpy, . (-) has the expression of
~ 2
whereoy, is the kernel widthew,, is the prediction weight such () = 1 Z wn (x - C;?)
that ) wm, =1, and(;" is the base cost fromBroker kg in Pl =m ) = T o S VT - o *P —202 '
meZLy n€Iy ,ntm

the m-th game. Basically, the estimated PDF is the weighted (13)

summation of a series of Gaussian functions that are cehterédnd it is the leave-one-out estimator [28]. Meanwhile,
at the corresponding historical prices. Since the basesco$tp;(x)dz can be calculated as

from the brokers can vary due to the difference in provisigni ~ ~ N2
schemes and due to the fact tigxbker k& is unaware of the / 2 (Ve — Z Z Wm * Wn exp (Cl:n - C,’;)
base cost fronBroker k in the current game, we normalize == Var - oy, —4o?
the price fromBroker k in each previous game with the ratio

between the base costs of that t game and the current one fr@y combining Egs. (11)-(14), we gét(oy) as
Goa !

. (14)

Broker kg, i.e., using the termCT Cy in Eq. (8). We define ~m S
Ly e g [ (G
M+1 A2 -
Gp =S .cp. ©) T neT b
CH’L ~ ~ 2
| . . % (Cr—cy)
Fig. 2 shows an illustrative example on the Gaussian kernel > i exp 5
density estimation. For the five historical games that agelus mez, nez,nzm ¥V 2Tk (1 —wm) [Zr] —20%

in the prediction forBroker k, we have historical prices (15)



Hence, we can determine the optimal valuespfas
op =argmin{f(ox)}, Vk. (16)

With Egs. (8) and (15)-(16), we can estimate the PDF of the
price fromBroker k precisely. Then, after having obtained the
PDFs of the prices from all of its competitoBtoker &, can
determine the optimal bidding price for the current game, (
(C,if“)*) by solving the following optimization problem

1L ([ miow) |

3 Available FS

M+1ys _ M1
(Cr, ™) —argmgx{(C Cro )

k7o - Virtual Link
H . (17) a:1-4
Basically, Broker k; can win the game when and only when b: 1-3-5
all the other subscribed brokers offer higher prices than it ) P
Hence, Eqg. (17) tries to maximize the expected profBker d — Inter-Domain Link
ko. In order to solve Eq. (17) fofC,)'*")*, we can take the ol Domain2 ‘;‘75
logarithm of the term insiderg mgx{ } and obtain () '
Fig. 3. Operation principle of multi-broker based multindain SD-EON
) = log (C CM+1) H </°° 5 )dx) system, (a) working procedure and (b) ID-VT abstraction.
kko MO (18)
JVI+1
= log(C — G, ; log/ Pr(z an inter-domain lightpath requegtR(s,d, B, T), an ID-VT
k#kg

includes the intra-domain information of the spectrumiza

Finally, the optimal bidding priCQCMJrl) can be deter- tions, hop counts, and physical lengths of the virtual links
mined by checking the zero points éﬁ as (VLs), which are abstracted from the path segments that are

dC ' from s to egress nodes in the source domain, between ingress
dz(C) _ _—Pe(C) nodes and egress nodes in intermediate domains, and from
ac  Cc- gM“ ol [ pr(x)da ingress nodes td in the destination domain. For example, in
_pk(o) (19) Fig. 3(b),VL a ande correspond tdPath Segments-4 and
o CM+1 + kZ 1= wm- (c_a?) d 6-8-10 in Fig. 3(a), respectively. Then, each broker constructs
#ho et Tk a virtual topologyG’ with the acquired information, and uses

G’ to calculate a RMSA solution for provisioningR.
Here, we apply thé(-shortest path routing and impairment-
S | z? aware RMSA scheme, and each broker decides the
o(C) = exp [ —— ) dz. (20) . . .
oo V2T modulation-formats to be used on the whole or partial candi-
date paths of R based on the quality-of-transmission (QoT)
[30]. More specifically, we assume each modulation-format
V. NC&M SYSTEM IMPLEMENTATION is related to a maximum transparent transmission reach and

We implement the proposed multi-broker based incentivihe brokers will select the modulation-format with the regh
driven service provisioning framework in an OpenFlow- mhsespectral efficiency under such constraint. Once the madulat
NC&M system for multi-domain SD-EONs. Basically, thdformat is determined, the number of required F&'scan
system utilizes the network architecture in Fig. 1, where te computed as. = [WW where CEPSK is the
DMs are realized with OpenFlow controllers (OF-C) baseglansmission capacity of an FS when it uses BPSK as the
on the POX platform [29] and the brokers are implementedodulation-format, andn = 1,2,3 and 4 represents the
with our own software modules. Meanwhile, since this worknodulation-levels of BPSK, QPS}@-QAM and 16-QAM,
concentrates on the NC&M operations in multi-broker basedspectively. Meanwhile, we assume that O/E/O regenerator
multi-domain SD-EONSs, the optical switches are softwarean be used on the border nodes between domains, when
emulated, each of which is programmed based on Open-spectrum conversion has to be performed or a lightpath
vSwitch [29] and runs on an independent Linux server.  does not even satisfy the QoT requirement of the lowest

Fig. 3(a) illustrates the operation principle of the multimodulation-level ite., BPSK). Finally, each broker performs
domain SD-EON system, while each step of the proceduresigectrum assignment with the specified scheme on the can-
explained in details in Table I. Here, the OF-Cs commungatdidate paths and select the one with the lowest base cost as
with optical switches using the extended OpenFlow protoctiie RMSA solution. To realize the procedure in Table I, we
defined in [10], and we reuse tlRacket In message to carry leverage the inter-domain protocol (IDP) that we designed
the information of a lightpath request. In order to factéta in [11, 18] to facilitate the communications between the
cost-effective inter-domain service provisioning, each-© brokers and OF-Cs, and Fig. 4 shows the formats of the
provides ID-VTs to its subscribed brokers. Specifically; fomessages used in the IDP. Basically, we incorporate some

where the functiorb(-) has the expression of




Source Destination  Holding Bitrate Domain 2
Address Address Time

(a) Inter-Domain Request

Success Holding Ingress Virtual Egress
Flag Time Inter-Link Link Inter-Link

Starting  Number of Modulation
FS FS Format

(b) Inter-Domain Reply V\rt/u'al Link n
Numberofl' Ingress Egress i 1 Ingress Egress i

. . 1 Il . 1
MinvellCinks)RAddiess /B RAddiesSERR osidiessIoRRAddiessIol; O Border Nodes

(c) Status Request —— Inter-Domain Links

i Hop Physical . i Hop  Physical
1 Count 1 Length 1 i Countn Length n

(d) Status Reply

Fig. 5. Network topology of experimental testbed.

Fig. 4. Messages designed for the inter-domain protocoP)ID

which includes two domains and each of the DMs subscribes

to two brokers. Fig. 5 shows the network topology used in the
minor extensions to the IDP and make it adapt to the mulgxperimental testbed. We assume that the network operates
broker scenario. Meanwhile, we hope to point out that tHe the C-band and hence each fiber can accommogizte
communications between the brokers and OF-Cs can alsof$&s, each of which has a bandwidth o2.5 GHz, i.e,
realized by extending the existing path computation elemefiz..; © = 12.5 Gb/s. The maximum number of O/E/O
communication protocol (PCEP) discussed in [31, 32], asfigenerators on each border node is sef(asThe lightpath
also considers the economic aspects of multi-domain Seguests are generated dynamically according to the Roisso
EONSs. In our future work, we will study how to treat ourtraffic model, with their source and destination nodes ramiglo
IDP design as a new extension in PCEP. selected. This means that a lightpath request can use ary nod

in the topology as its source and destination, while its spet

OPERATIONPRINCIPLE OFMIT'EEER’IOKER BASEDMULTI-DOMAIN aS_SIQnment can Only l?e Changed on Int.ermedlate. border nOdeS
SD-EON S/STEM with O/E/O regenerations. We apply this constraint to emsur
that the additional operational cost and energy consumptio
Step 1 An inter-domain lightpath requestR(s = due to O/E/O regenerations can be controlled well. The
1,d =10, B,T) arrives at the OF-C of its source domain  bandwidth requirements follow a uniform distribution with
(i.e., OF-C-1) through aPacketIn message. [25, 500] Gb/s. The unit costs for using an FS and a regenerator
Step 2 OF-C-1 forwardsL R's information to all its sub- per provision period are set ag = 1 andcr = 5 units,
scribed brokers withinter_Domain Requesmessages. respectively. Note that, since this work focuses on inter-
Steps 3and4: Upon receiving the information oh R, domain service provisioning, we only collect experimental
each broker interacts with OF-Cs usifgatus Request results related to inter-domain lightpath requests.
and StatusReplymessages for getting ID-VTs. Meanwhile, we assume that based on their SLAs, the two

Step 5 Each broker performs RMSA fdk Rz, calculates brokers gets different ID-VTs from each DM. Specifically,
the price for its provisioning service with Egs. (8)-(20)  for Broker 1, each DM abstracts the ID-VTs by calculating
and returns the price to the source domain’s OH:€,(  the path segments.€., VLs) with shortest-path routing, and
OF-C-) using aProvision Requesmessage. thus we referBroker 1 as Broker-SP in this section. On the
Step G After obtaining the prices from all the brokers, other hand, foBroker 2, the DMs calculate VLs as the path
OF-C-1 selects the broker that offers the lowest price segments that have the maximum available FS's, and hence
as the winner and commits its provisioning task with a Broker 2 is named as Broker-LB. Note that, after obtaining
Provision Replymessage. the ID-VTs from the DMs, each broker tries to provision an
Step 7 The winning broker distributes the inter-domain  inter-domain lightpath request with three RMSA algorithms
provisioning scheme that it calculated before to each i.e, K-shortest path and first-fit (KSP-FF) [7;-shortest path
related OF-C using amter_Domain Replymessage. and load-balancing (KSP-LB) [33], and fragmentation-awvar
Step 8 Each OF-C sets up the lightpath segment in its RMSA (FA) [34], and uses the provisioning scheme that has
domain accordingly, by sending Flow_Mod message  the lowest base cost in the bidding for the provisioning task
to each related optical switch, and finallyR is provi-

sioned successfully. A. One-Time Provisioning with Multiple Brokers

We first perform an experiment on one-time service pro-
V| EXPERlMENTAL RESULTS ViSioning W|th multlple brokeI’S tO Verify that the proposed

We conduct inter-domain service provisioning ex erimen%Stem can operate correctly. Fig. 6 shows the message list
P g exp aptured on an OF-C for setting up an inter-domain lightpath

in the multi-broker based multi-domain SD-EON testbe fom Node 2 to Node 20. It can be seen that the system

2Note that, according to the rational assumption in gamerjhétee brokers  Works exactly according to our designe., Brokers 1 and

should apply the bidding strategy to maximize their profitence, we make 9 compete for the provisioning task ar@roker 1 finall
the brokers use our proposed bidding strategy as it is thé effestive one P P 9 y

we have found so far. By doing so, we respect the rationalgumption in wins th? game. The Wh_0|e process Only takes around
game theory and also realize a relatively fair comparison. msec. Fig. 7 shows the wireshark captures ofStetus Reply
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Fig. 6. List of messages used for setting up an inter-domghtgath.
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~Header
Type: Status_Reply (3) . ) . ) .
Length: 157 Fig. 8. Request blocking probabilities from single- and tirofoker based
id: :

~Vir_reply scenarios.

[ Vir_num:"3

I~Vir_candi

1 Path_length: 800

Hops: 1

Bitmask: 1ffee2f777fflfelae78ee0d3df9975766eae6fd4eb9e7el. .

e ength: 775 | [19]. Here, the multi-broker based scheme uses our designed
::::\;si: 3bfbd@ab5e4d7eaa12beafc7c7ea7flffc57eaaf4f2b229e..E blddlng Strategy' We Seimzn - 0'11 5mam - 1! the Slze Of
i the prediction window a§) = 300, and the prediction weights

~Vir_candi
Path_length: 116060

Number_of_FS: 12

| _bitmask: Sbfe7ASFFI0ecS T 13e2b3Tel5a34dBbab T ABBETTFS. . aswn = gi'tgy . the weights of the historical prices
_ () _ increase linearly withm (the index of a historical game).
Inter-Domain-Protocol ,» Type: Inter_Domain_Reply (6) i ) .
Header it Fig. 8 shows the results on request blocking probability.
Holding_tine: 120 It is interesting to notice that the multi-broker based sche

~Igress_match . . . -

in_port: 0 achieves lower blocking probability than the single-bmoke

Starting_FS: © - - -

Nunber_of_FS: 0 based schemes, which can be explained as follows. Basically
CTER e, in the multi-broker based scheme, an “optimal” provisi@nin
I virtual_link_ID: 1 | , Spectrum assignment i i it
5 Sterting. e 6 A o Ik scheme is determined for each request through the conapetiti

of the brokers,i.e, the source DMs have the option of
: Spectrum assignment choosing the provisioning schemes With_the_ Iowest prices.
| Starting Fs: 64 on inter-domain link Hence, the overall network resource utilization is arrahge
! Modulation_format: 11  (b) with high efficiency. However, this is not possible in the
single-broker based scheme. Therefore, the multi-broaset
Fig. 7. Wireshark captures of (#tatusReplyand (b)inter DomainReply  scheme can outperform the single-broker based schemes in
messages. terms of blocking probability.
We then compare the performance of the proposed broker
. _ _ bidding strategy to that implied by the Nash equilibrium
(.., from OF-C4 to Broker 1) andInter_Domam_Reply(LFa” obtained in Section IlI-D. Here, we name the scenario in
from Broker 1 to OF-C4) messages used in the experimenfin photh brokers operate according to the Nash equilibriu
We obsgrve that OF—CD_—abstracts an ID-VT to report theas Nash-Game, where the brokers always submit the lowest
information of three VLsi(e., 2-6, 2-6-9 and2-3-5-8-10), SUCh i price to bid for the provisioning tasks. Our pragubs
as their path lengths, hop counts and sp_ectrum utilizatio dding strategy is referred as KDE-Game. Fig. 9(a) shows
n the S_tatus_RepIymess_age tddroker 1. While afterBrok_er the results on total broker profits versus traffic loads, and i
1 winning the game, it instructs OF-C-to use the first .o, e seen that KDE-Game always achieves much higher
ﬁrofit than Nash-Game. This is because with our proposed
bidding strategy, the brokers can predict the behaviorbaif t

Modulation_forma

out_port: 3

assigned spectra as the FS-bloéK, 75] and the selected

mhodulagoln-_formatdas BPSK. MegnwhnB,roker r11 p.rowduet[s) competitors and then adjust their profit ratios intelliggrfor
It' tla(moouFagon anh_ T]p(_ectr#m as&gnmeEts ont he inter- dr_nf'ﬂaximizing their profits. This can be verified with the result
link to OF-C-1, which is the same as that on the preceding g, () \vhich samples the evolution of the bidding pic
intra-domain segment. Hgn(_:e, the |_nter—d0ma|n Il_ghtmttet from the brokers in KDE-Game. We can see that Broker-LB
up trapsparently from withirbomain 1 to Domain 2, and ecreases its profit rati® from 0.4978 to 0.4933 when it has
there is no need to allocate an O/E/O regenerator on &t the second game, and then it wins the third game
corresponding border node(, Nodef). To study KDE-Game further, we also plot the profits of
) ] S ) Broker-SP and Broker-LB, which obtain different intra-daim
B. Dynamic Service Provisioning with Repeated Games  jnformation from the OF-Cs, in Fig. 10. It can be seen that
We conduct experiments on dynamic service provisionirgroker-SP outperforms Broker-LB all the time, for the reaso
with repeated games first to verify the effectiveness of thbat it calculates provisioning schemes with lower basescos
proposed multi-broker based multi-domain SD-EON architeby using the shorter VLs from OF-Cs. Therefore, it holds
ture when compared with the single-broker based schemeaiivantage in the game. We also observe that the advantage
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Fig. 9. Experimental results from long-term repeated games
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Fig. 10. Total profits of KDE-Game brokers (Broker-8€rsusBroker-LB).

from Broker-SP over Broker-LB gets smaller when the traffic

ratios achieved by both brokers. Basically, as both brokers
leverage the KDE-based bidding strategy, the decisionsemad
by them impact the profits of each other mutually, which
means that the broker in turn would have to reduce its profit
ratios to maintain competitiveness in the game. Howevegsgh
results would not necessarily suggest that using a sm@ller
would make a broker more profitable in any case. This is
because in a practical scenario, some brokers may apply othe
bidding strategies or even change their strategies dyradimic
Hence, letting a broker use a relatively la@de.g, @ = 300)

can make sure that it can possess sufficient cognition on its
competitors’ behaviors. Meanwhile, how to decide the value
of @ in different network scenarios is still an open question
to us, and we will study it in our future work.

VIl. CONCLUSION

This paper studied the incentive-driven service provision
ing in multi-broker based multi-domain SD-EONs. We first
presented the theoretical model of the network operations
to describe the noncooperative game in which the brokers
compete for inter-domain provisioning tasks with only inco
plete information on their competitors. Then, we analyZes t
Nash equilibrium in a simplified version of the game, and
showed that to maximize the brokers’ profits in long-term
repeated games, an effective bidding strategy is needetdor
brokers to predict their competitors’ behaviors and prioart
services in the optimal way. We designed the bidding styateg
by leveraging the kernel density estimation scheme. Binall
to demonstrate the effectiveness of our bidding strategy, w
implemented it in an OpenFlow-based multi-domain SD-EON
control plane testbed. Our experimental results verifieat th
the system performs well and the brokers can obtain higher
profits with the proposed bidding strategy in repeated games
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