
IEEE Network • March/April 201712 0890-8044/17/$25.00 © 2017 IEEE

Abstract
Software-defined networking separates the

control and forwarding planes of a network
to make it more programmable and applica-
tion-aware. As one of the initial implementations
of SDN, OpenFlow abstracts a forwarding device
as a flow table and realizes flow processing by
applying the “match-and-act” principle. Howev-
er, the protocol-dependent nature of OpenFlow
still limits the programmability of the forwarding
plane. Hence, in this article, we discuss how to
leverage protocol-oblivious forwarding (POF)
to further enhance the network programmabil-
ity such that the forwarding plane becomes
protocol-independent and can be dynamically
reprogrammed to support new protocol stacks
seamlessly. We first review the development of
OpenFlow and explain the motivations for intro-
ducing POF. Then we explain the working prin-
ciple of POF, discuss our efforts on realizing the
POF development ecosystem, and show our
implementation of POF-based source routing as
a novel use case. Finally, we elaborate on the first
WAN-based POF network testbed that includes
POF switches located in two cities in China.

Introduction
Over the past decade, the Internet's rapid devel-
opment has pushed the scales of end users, net-
working applications, and network elements to
grow exponentially. Meanwhile, due to the com-
petitive tussle among different stakeholders, the
network architecture has become more and more
complicated, brought to “ossification.” Conse-
quently, the introduction of new protocols and
services can be slowed down and even impeded.
In response to these issues, software-defined net-
working (SDN) has emerged as a new paradigm
to change how the Internet operates [1]. Specif-
ically, SDN separates the control and forwarding
planes of a network, and leverages centralized
network control and management (NC&M) to
make it more programmable, flexible and applica-
tion-aware. Therefore, new networking protocols
and services can easily be developed with the for-
warding plane abstraction provided by the control
plane.

As one of the initial implementations of SDN,
OpenFlow [2] provides a powerful tool set for
network operators to program and manage their
networks adaptively [3]. However, its protocol-de-
pendent nature still limits the programmability
of the forwarding plane. Specifically, OpenFlow

defines the matching fields in flow tables accord-
ing to existing network protocols (e.g., Ethernet
and IP). Therefore, OpenFlow switches need to
understand the protocol headers to parse pack-
ets and perform flow matching, which may cause
serious compatibility issues when new protocols
try to add or remove header fields. Hence, it is
desirable that the network programmability can
be further enhanced such that the forwarding
plane is protocol-independent and can be dynam-
ically reprogrammed to support new protocol
stacks seamlessly. Following this idea, recent stud-
ies have proposed a few new SDN technologies,
such as protocol-oblivious forwarding (POF) [4]
and programming protocol-independent packet
processors (P4) [5]. The basic idea behind POF
and P4 are similar, as they both try to decouple
network protocols from packet forwarding and
make the forwarding plane reconfigurable, pro-
grammable, and future-proof.

More specifically, POF introduces a proto-
col-independent instruction set, which allows a
network operator to define the protocol stack
and packet processing procedure in a much more
flexible manner than that in the current Open-
Flow specifications, while P4 designs a high-level
language to program an SDN switch more flexi-
bly for protocol innovations. As POF defines the
southbound interface that can be treated as a
promising enhanced version of OpenFlow, we
consider it in this work and try to demonstrate
that network innovations can easily be realized
with it.

This article discusses how to enhance the pro-
grammability of forwarding plane in SDN with
POF. We first review the development of Open-
Flow and explain the motivations for introduc-
ing POF. Then we discuss our efforts on realizing
the POF development ecosystem, and show our
implementation of POF-based source routing as a
novel use case. Our work to build the first WAN-
based POF network testbed, which includes POF
switches located in two cities in China, is also pre-
sented. Finally, we summarize the article.

Review of OpenFlow
Since its inception, OpenFlow has used a proto-
col-dependent forwarding plane. Specifically, the
evolution of OpenFlow specification takes a reac-
tive approach instead of a proactive one, that is,
all the matching fields and actions are defined
based on existing protocols. This means that we
have to update the matching fields and corre-
sponding actions constantly as it becomes more

Protocol Oblivious Forwarding (POF): Software-Defined Networking with Enhanced
Programmability
Shengru Li, Daoyun Hu, Wenjian Fang, Shoujiang Ma, Cen Chen, Huibai Huang, and Zuqing Zhu

The authors are with the
University of Science and
Technology of China.

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.2017.1600030NM

IEEE Network • March/April 2017 13

widely deployed with the need to support more
protocols. Hence, the numbers of actions and
matching fields keep increasing with the evolution
of OpenFlow specification; for example, the latest
OpenFlow v1.5 has to support 44 matching fields
and 19 actions, while the numbers in OpenFlow
v1.0 were 12 and 10, respectively. Therefore,
when we want to support a new network proto-
col with OpenFlow, we have to check whether
it can leverage the existing matching fields and
actions in the latest OpenFlow specification. If
not, we have to extend the specification and wait
for the new version to be standardized. Appar-
ently, this would inevitably make the OpenFlow
specification more and more complicated, which
would eventually restrict the innovation capabili-
ty of OpenFlow. Hence, to enhance OpenFlow,
POF [4] and P4 [5] have been put forward to
create a protocol-independent and vendor-ag-
nostic SDN environment. As both approaches
have attracted intensive interest from the Open
Networking Foundation (ONF), they are consid-
ered in ONF's project on protocol-independent
forwarding (PIF) [6].

Protocol-Oblivious Forwarding
Overview of POF

Figure 1 shows the overview of POF. The network
architecture in Fig. 1a indicates that POF also uses
a centralized controller to manage the packet for-
warding in the switches. However, to make the
forwarding plane protocol-independent, POF uses
the forwarding procedure in Fig. 1b. Specifically,
the packet parsing and flow matching in POF are
based on a sequence of generic key assembly
and table lookup instructions [4]. Hence, POF
switches do not need to know the packet formats
in advance. Actually, the search key of a matching
field is defined as a tuple <offset, length>, where
offset indicates the matching field's start bit loca-
tion in a packet, and length tells the field's length
in bits. For instance, in Fig. 1b, the IPv4 Source
Address field in an IPv4-over-Ethernet frame is
denoted as <offset = 208 bits, length = 32 bits>.

POF also includes a generic flow instruction set
(POF-FIS) to facilitate POF switches to parse, edit,
and forward packets arbitrarily [7]. It is known
that in OpenFlow, the instructions and actions
are also protocol-dependent; for example, actions
like push, pop, and set are all subject to a specific
packet field. While with POF-FIS, all the instruc-
tions and actions become protocol-independent.
Hence, for packet forwarding, all a POF switch
needs to do is to extract the matching fields from

packets based on certain tuples <offset, length>,
perform flow table lookups, and then execute the
associated instructions defined in POF-FIS.

On top of these innovations, POF defines four
types of flow tables to enhance the programmabil-
ity of the forwarding plane, which are the masked-
match (MM) table, the longest-prefix-match (LPM)
table, the extract-match (EM) table, and the direct
table (DT). These types of tables occupy different
memory sizes and can be searched with specific
table lookup algorithms. Note that a flow entry
in all the tables consists of both matching field(s)
and related instruction(s), except for DT, whose
flow entries only include instructions. By leverag-
ing these tables, the forwarding procedure in a
POF switch can be abstracted as a data path pipe-
line. To handle the situation in which the switch
needs to store the flow information temporarily,
POF defines a metadata memory for each switch
and introduces several metadata-related instruc-
tions.

Ecosystem of POF Development
We realize a simple ecosystem to facilitate the
network innovations with POF:

Control Plane: We can realize a POF con-
troller by leveraging the existing open source
platforms for OpenFlow controllers. Hence, we
develop a POF controller by extending the POX
platform. In addition, when the SDN networks
are managed and operated by different operators,
they need to deal with the inter-domain traffic
flows. Even though POF specification has already
defined the protocol for the interactions between
the control and forwarding planes, the mecha-
nism and implementation for POF-based inter-do-
main operations still have not been addressed.
Therefore, to fill in the missing puzzle piece, we
design an inter-domain module (IDM) and include
it in our POF controller. The IDM is realized with
JavaScript Object Notation (JSON) and helps
the domain managers (i.e., POF controllers) to
exchange inter-domain information.

Figure 2a shows the inter-domain operation
scheme of POF networks. Here, we design the
IDM to exchange the information on network
reachability, intra-domain network protocol, and
so on among the controllers. Each controller
abstracts its own domain as a “big switch” and
generates a domain forwarding table to describe
the connectivity among the domain and its neigh-
bors. The domain forwarding table will be broad-
cast to the controllers in neighbor domains when
there is a change in the inter-domain topology.
After collecting the domain forwarding tables

FIGURE 1. Overview of POF: a) architecture of a POF-based network; b) packet forwarding procedure in POF.

PacketsPackets

Payload IPv4 MAC

POF switch

(b)(a)

Payload IPv4 MAC

V IHL TOS Total length
ID

Source Address
<offset=208, length=32>

Destination Address

Offset
TTL Protocol Checksum

Flow table N

< 208, 32 >

••
•

•••

Matching fields
<offset 1, length 1>
<offset 2, length 2>

POF network

POF controller

PO
F p

rot
oco

l

POF switch

Flo
w

in
str

uc
tio

n

Flow table 1

< 208, 32 >

••
•

Matching fields
<offset 1, length 1>
<offset 2, length 2>

Flo
w

in
str

uc
tio

n

IEEE Network • March/April 201714

from all of its neighbors, each controller con-
structs a global virtual topology. Then, when an
inter-domain traffic flow arrives, it can calculate
and find the right next domain to forward the
flow to. For the flows that require specified quality
of service (QoS), the controller can also set up an
end-to-end routing path across multiple domains
by collaborating with other controllers. Specifical-
ly, to realize this feature, we define an inter-do-
main message to encode the flows' requests and
also design the protocol for controller collabo-
ration. Figure 2b shows the packets captured
between the IDMs for exchanging a domain for-

warding table and sending the inter-domain mes-
sage for end-to-end flow path setup, respectively.

Forwarding Plane: Similar to the case of
OpenFlow, we need two types of switches (i.e.,
commercial and software-based ones) to realize
the packet forwarding functionalities described
earlier. Fortunately, network equipment vendors
are in a joint force to design and implement POF.
For instance, Huawei has partially supported POF
with their router platforms (e.g., Huawei NE40E
and NE5000E) and also published an open source
prototype of a software-based POF switch online
[8]. However, the commercial routers are pro-
hibitively expensive for academic research, while
the open source software-based switch has per-
formance issues, that is, the packet forwarding
throughput is very limited (i.e., below 200 Mb/s
per port).

The major issue with the software-based POF
switch prototype published in [8] is that it was

FIGURE 2. POF control plane for multi-domain scenarios: a) POF inter-domain operation; b) Wireshark cap-
tures of control packets to/from IDMs in POF controllers.

(a)

(b)

Frame 3033: 457 bytes on wire (3656 bits), 457 bytes cap
Ethernet II, Src: WistronI_08:8a:aa (70:e2:84:08:8a:aa)
Internet Protocol Version 4, Src: 192.168.109.230, Dst:
Transmission Control Protocol, Src Port: 55794 (55794),

JavaScript Object Notation: application/json
Object

Hypertext Transfer Protocol

Link 2

Link 1
Link 4

Domain 1 Domain 2

Link 3

Link 2

Link 3

Link 1

Domain 1 Domain 2

Link 4

Virtual topology abstraction

SW4SW2

SW1

SW3 SW5 SW6 SW8

SW9

SW5 SW7

POF controllerIDM
APIs

POF controller IDM
APIs Inter-domain messages

Member Key: “destination”
 String value: 10.0.0.1
Member Key: “type”
 String value: path_setup_request
Member Key: “matchList”

Array
Object

Member Key: “length”Member Key: “length”
 Number value: 32
Member Key: “name”
 String value: SrcIP
Member Key: “value”
 String value: 192.168.1.10
Member Key: “offset”
 Number value: 200

Member Key: “length”
 Number value: 32
Member Key: “name”
 String value: DstIP
Member Key: “value”
 String value: 10.0.0.1
Member Key: “offset”
 Number value: 232

Object

Frame 293: 421 bytes on wire (3368 bits), 421 bytes cap
Ethernet II, Src: WistronI_08:8a:aa (70:e2:84:08:8a:aa)
Internet Protocol Version 4, Src: 192.168.109.230, Dst:
Transmission Control Protocol, Src Port: 55796 (55796),

JavaScript Object Notation: application/json
Object

Hypertext Transfer Protocol

Member Key: “table”

Member Key: “type”
 String value: forwardingTable

Array
Object

Member Key: “outputLink”
 Number value: 2

Object
Member Key: “outputLink”
 Number value: 3
Member Key: “dstIP”
 String value: 192.168.109.150/32

Object
Member Key: “outputLink”
 Number value: 4
Member Key: “dstIP”
 String value: 10.0.0.2/16

Member Key: “dstIP”
 String value: 192.168.1.10/24

Our software-based switch has much higher packet processing/forwarding capacity and hence can
make sure that all the video packets are handled in a timely and lossless manner even though there is

500 Mb/s background traffic.

IEEE Network • March/April 2017 15

designed to move packets between the kernel
space and user space of Linux too frequently,
which makes the packets being handled in the
switch go through a few time-consuming and
unnecessary processes, including CPU inter-
rupt handling, user-space-to-kernel-space con-
text switching, and so on. Therefore, the long
processing time limits the throughput of the
software-based switch. We try to overcome this
drawback by ensuring that the packet processing
and forwarding in a software-based POF switch
are all conducted in the user space of Linux [9].
Basically, we design and implement our own soft-
ware-based POF switch by leveraging the Intel
data plane development kit (DPDK) [10] to for-
ward the packets received by a network interface
card (NIC) directly to the packet processing/for-
warding module in the user space. Hence, they
would experience much less latency and can
adapt to the sophisticated processing in the for-
warding plane of POF. Figure 3a shows the archi-
tecture of our software-based POF switch, and it
can be seen that the DPDK driver helps exchange
packets between the Ethernet ports in a NIC and
the POF packet processing/forwarding module in
the user space.

To illustrate the performance improvement
achieved by our design, we measure the pack-
et forwarding throughput of our software-based
POF switch and compare it to that of the one
published in [8] (i.e., without DPDK-based imple-
mentation). Figure 3b shows the experimental

results. Here, we use an IXIA packet generator
to pump 1 Gb/s packets to the two types of soft-
ware-based switches running on independent
high-performance servers that are equipped with
Gigabit Ethernet (GbE) NICs, and measure the
received throughput at the outputs of the switch-
es. It can be seen that our software-based POF
switch achieves much higher throughput and
almost reaches the line rate of the GbE NICs. We
then use the software-based switches to forward
the packets for high-resolution video streaming
and perform experiments to further verify the
performance of our switch. Specifically, we emu-
late a network environment in which a 3.5 Mb/s
video streaming packet flow needs to be forward-
ed together with 500 Mb/s background traffic
(e.g., UDP packets). Figure 3c plots the luminance
component's peak signal-to-noise ratios (Y-PSNR)
of the received videos, which indicate that the
quality of the video forwarded by our soft-
ware-based switch is much higher and more sta-
ble than that of the benchmark. This is because
our software-based switch has much higher pack-
et processing/forwarding capacity and hence can
make sure that all the video packets are handled
in a timely and lossless manner even though there
is 500 Mb/s background traffic.

Use Case: POF-Based Source Routing
With the ecosystem discussed above, we can real-
ize new network applications/operations more
easily and efficiently. In this section, we show

FIGURE 3. Design and performance of our software-based POF switch: a) architecture of our software-based POF switch with Intel
DPDK; b) throughput comparison of software-based POF switches; and c) comparison on the Y-PSNR of received videos from dif-
ferent software-based POF switches.

Experimental time (s)

(b)

POF switch in [8]

•••

Kernel space Kernel space

Packet processing/forwarding

POF switch w/ DPDK

Packet processing/forwarding

DPDK
library

Packets Packets
(a)

100

200

0

Th
ro

ug
hp

ut
 (M

bp
s)

400

600

800

1000

20 30 40 50 60

Streaming time (s)
100

75
100

0

Y-
PS

N
R

(d
B)

50
25

20 30 40 50

Streaming time (s)

(c)

100

75
100

0

Y-
PS

N
R

(d
B)

50
25

20 30 40 50

User space

RX TX

NIC N

•••
RX TX

NIC N

RX TX

NIC 2

RX TX

NIC 1

RX TX

NIC 2

RX TX

NIC 1

User space

Software-based POF switch in [8]

Our software-based POF switch w/ DPDK

Software-based POF switch in [8]
Our software-based POF switch w/ DPDK

IEEE Network • March/April 201716

POF-based source routing as a use case.

Principle of Source Routing
It is known that since the inception of SDN, the
scalability of flow table space has always been an
important issue [1]. The issue is especially tricky
when the SDN network needs to carry a huge
volume of traffic from many flows (e.g., in a data
center network). Basically, when the flow entries
installed in the switches increase rapidly, they can
exhaust the switches' ternary content addressable
memory (TCAM) easily and degrade forwarding
performance.

SDN-based source routing has been consid-
ered as a promising way to solve the scalability
issue mentioned above [11]. Specifically, in each
packet, source routing encapsulates a series of
output ports in the header fields to represent
the forwarding action on each hop along the
routing path. Then, when the packet is forward-
ed along the routing path, each switch extracts
and performs its designated forwarding action in
sequence (i.e., popping out the header field that
contains the designated output port for the cur-
rent hop and directing the packet accordingly).
With this scheme, the authors of [11] discussed
OpenFlow-based source routing, which encodes
the output port sequence in one or more header
fields supported by OpenFlow (e.g., VLAN header
and multiprotocol label switching [MPLS] header).
Then they showed that multiple flows can share
the same flow table in a core switch if their des-
ignated forwarding actions at that switch use the
same output port.

Note that this OpenFlow-based source rout-
ing scheme is still protocol-dependent, that is, the
encoding of output ports has to reuse the head-
er fields of legacy protocols and thus cannot be
adjusted adaptively. For instance, the lengths of
the encoded fields are either fixed or at least rigid
and can hardly adapt to the hop count of routing
paths in an arbitrary network. In addition, because
of the flow matching principle of OpenFlow,
the volume of installed flow entries in each core
switch is still proportional to the number of output
ports on the switch. In the discussions below, we
show the design of POF-based source routing,
and verify that it is more flexible and time-effi-

cient, and the volume of installed flow entries can
be reduced substantially.

Packet Design for POF-Based Source Routing
By using the protocol-independent feature
of POF, we can realize source routing without
reusing the header fields in legacy protocols
[12]. Basically, we can tailor the packet fields to
store the path information efficiently and enable
effective source routing. Figure 4a describes the
POF-based source routing packet format that we
design in this work. For backward compatibility,
we insert the source routing header between the
Ethernet header and IP header. In order to iden-
tify source routing packets, we set the type field
in the Ethernet header to 0x0908 to indicate that
the Ethernet frame contains a POF-based source
routing packet. Actually, this field can use another
feasible value as long as it does not conflict with
those defined for existing protocols [13].

The detailed descriptions on the fields includ-
ed in the source routing header are as follows:
1. The time-to-live (TTL) field occupies 8 bits

and represents the number of remaining
hops for the packet to travel to its destina-
tion in a POF network. Thus, the value of this
field will be set at the ingress edge switch
to the POF network and decreased by 1 on
each hop in it. When the packet is about to
leave the POF network, the egress switch
will remove the source routing header by
using the del-field instruction in POF-FIS.

2. The Port field contains 32 bits, and its value
identifies an output port of a POF switch.

Note that we design this field according to the
Port-ID field used for POF-enabled switches [14],
which is 32 bits. However, considering the fact
that a switch would normally have fewer than 256
output ports, we can shorten the length of this
field. This can easily be realized with either of the
two following approaches.
•	 We keep the POF switch as it is, but shorten

the Port field in source routing packets. Then
we use padding bits to make the field 32 bits
when it is being written into the metadata
memory and matched to a switch port. Note
that this can easily be realized with POF-
FIS, and thus we do not need to modify any

FIGURE 4. POF-based source routing: a) the procedure used to process the flow table in core switches and packet header designed for
source routing; b) the operation principle of POF-based source routing.

DMAC
Offset (bits) 0 48 96 112 120 152

Source routing header

SMAC Eth_type TTL Port 1 ••• Port N IP

Table 1 (DT)

Table 0 (MM)

Match Instructions
{96b, 16b}==0x0908 goto-direct-table: Table 1

Table 2 (MM)
Match Instructions

{112b, 8b}==1
del-field<112b, 40b>;
mod-field<96b, 16b>;

output: port_id=[0b, 32b];

{112b, 8b}==*
del-field<120b, 32b>;

calculate-field{112b, 8b};
output: port_id=[0b, 32b];

Instructions
Metadata memory
Port buffer [0b, 32b]

Write-metadata-from-packet

Write-metadata-from-packet:
[0b, 32b]==(120b, 32b);

goto-table: Table 2

(b)(a)

POF controller

Core switch

1

1

2

2

2

2

2

33

31

3 2
1

1
3

3

1

1
1

1

Edge switch

Core switchCore switch
Packet
Source routing header

Edge switch

Core switch

Data

IEEE Network • March/April 2017 17

codes in the software-based POF switch.
•	 We redesign the POF switch to use a shorter

variable to define the Port-ID field, and then
implement necessary changes in the POF
controller.

Packet Forwarding with POF-Based Source Routing
Figure 4b describes the packet forwarding proce-
dure with POF-based source routing. For a traf-
fic flow, when its first packet arrives at an ingress
switch to the POF network, the switch detects a
flow table mismatch and sends a Packet-In mes-
sage to the controller. Then the controller calcu-
lates a routing path for the flow to traverse the
POF network, determines the designated output
port in the switch on each hop along the path,
encodes the information in a Flow-Mod message,
and sends it to the ingress switch. After receiving
the Flow-Mod message, the ingress switch sets
up a flow entry for the flow and stores the out-
put ports in its metadata memory. Then, for every
packet of the flow, the ingress switch will convert
it to the POF-based source routing format in Fig.
4a and insert the output ports by using POF-FIS.

The intermediate core switches use our pro-
posed pipeline-like rule to process the POF-based
source routing packets. Note that since we design
the rule in such a way that it can be shared by
all the POF-based source routing packets, we
only need to install a small fixed number of flow
entries (i.e., four) in each core switch in the POF
network. Therefore, the volume of installed flow
entries in the core switches can be reduced sub-
stantially. Moreover, since we encode the rout-
ing path in each packet, the core switches do not
need to interact with the controller during the
path setup, and thus the path setup latency can
be reduced significantly too. Figure 4a explains
the pipeline-like rule that we propose to process
the POF-based source routing packets.

Before explaining the rule, we need to intro-
duce the following three types of notations to
assist the description.
•	 <offset, length> represents a field that starts

from the bit location offset in a packet or the
metadata memory of a POF switch and con-
tains length bits.

•	 {offset, length} is the value of the field that is
described by <offset, length> in a packet.

•	 [offset, length] is the value of the field that is
described by <offset, length> in the metadata
memory of a switch.
As shown in Fig. 4a, we leverage the forward-

ing plane programmability provided by POF to
realize the pipeline-like source routing packet
processing in core switches with three tables:
two MM tables and one DT. Upon receiving a
source routing packet, a core switch first passes
it to Table 0 and uses it to check the type field in
the Ethernet header, which is described by <96
bits, 16 bits>. If the field's value equals 0x0908,
the packet is a source routing one and should be
sent to Table 1, which is a DT whose entry only
includes an instruction. With Table 1, the core
switch copies the value of field <120 bits, 32 bits>
(i.e., the Port field that encodes the designated
output port of this hop) to its metadata memo-
ry by executing the write-metadata-from-packet
instruction. Finally, the packet reaches Table 2,
which includes two entries to determine wheth-

er the switch is the packet's last hop in the POF
network. Specifically, it checks the value of field
<112 bits, 8 bits> (i.e., TTL). If the switch is the last
hop (i.e., the packet's egress switch in the POF
network), the value of its TTL field will be 1. The
field will match the first entry in Table 2, and then
the del-field instruction is invoked to remove the
whole source routing header from the packet and
restore the type field in the Ethernet header to
its original value. Otherwise, the field will match
the second entry in Table 2, and the switch only
removes the leftmost Port field in the source rout-
ing header (i.e., the one represented by <offset
= 120 bits, length =32 bits>) with the del-field
instruction, decreases the TTL field by 1 with the
calculate-field instruction, and forwards the pack-
et to the designated output port that has been
stored in the metadata memory with the output
instruction.

To this end, we can see that the packet for-
warding procedure in each POF switch works just
like a software program, which verifies the for-
warding plane programmability provided by POF.
Specifically, the processing with the three tables
can be considered as the functions whose inputs
and outputs are the fields in the source routing
packets, while the metadata memory behaves like
temporary variables to save necessary informa-
tion. The number of flow entries installed on each
core switch for source routing is fixed at four,
which is relatively small and does not increase
with the number of output ports on switches any-
more. What is more promising is that as the pipe-
line-like packet processing in the core switches is
applicable to all the source routing packets, the
interactions between the control and forwarding
planes are minimized. Hence, compared to the
OpenFlow-based source routing in [11], our POF-
based scheme not only uses fewer flow entries
but also reduces the communication overhead
between the controller and switches.

Performance Evaluation
In order to further verify the proposed function-
ality and related benefits, we build an exper-
imental testbed to evaluate POF-based source
routing. Specifically, we use chain topologies, and
change the number of switches that are includ-
ed in the chain to observe the changes on the
path setup latency. Here, each switch is realized
by running our software-based POF switch on
a standalone Linux server. Here, the path setup
latency is measured by leveraging the Ping pro-
gram, and to emulate a real network situation,
we also inject background traffic in the testbed.
Figure 5a shows the results on path setup latency
from the schemes with and without the proposed
source routing scheme. It can be seen clearly that
with the proposed source routing scheme, the
path setup latency can be reduced significant-
ly and does not increase with the number of
switches along the path. These advantages can
be explained as follows. Basically, without source
routing, the path of a flow can only be set up
after the controller has configured all the switches

We can see that the packet forwarding procedure in each POF switch works just like a software
program, which verifies the forwarding plane programmability provided by POF.

IEEE Network • March/April 201718

on it. Hence, the time spent on the interactions
between the controller and switches becomes
longer when there are more switches to config-
ure. However, our proposed scheme would not
have this issue, since no matter how many hops
the path contains, the controller only needs to
configure the ingress switch to set it up and does
not need to interact with other switches.

Another benefit of our proposed POF-based
source routing is that compared to Open-
Flow-based routing, it uses fewer total flow table
entries in the network. Figure 5b compares the
total flow table entry usage with our POF-based
source routing scheme and the OpenFlow-based
benchmark. Here, the results are obtained by run-
ning simulations with a FatTree topology that con-
tains 16 end nodes. The dynamic traffic flows are
generated between the end nodes with the Pois-
son traffic model and have an average duration
of 10 s. We observe that compared to the Open-
Flow-based benchmark, our POF-based source
routing scheme reduces the total flow table entry
usage by 55–68 percent. More promisingly, with
the increase of the traffic load, the advantage of
our proposed scheme becomes more and more
significant. This is because our POF-based source
routing scheme only needs to install addition-
al flow table entries in the ingress switches to
accommodate a new flow, and thus the numbers
of used flow table entries on the core and aggre-
gation switches do not increase or have relation
with the number of output ports.

WAN-Based POF Network Testbed in China
In addition to our lab-based network environ-
ment, we also realize the first wide-area network
(WAN)-based POF network testbed that con-
nects both commercial and software-based POF
switches located in two major cities in China (i.e.,
Beijing and Hefei). Basically, to make the POF
networks practical, the ecosystem we developed
should also be tested in real deployed networks,
to verify their performance, functionality, and
effectiveness. As shown in Fig. 6a, the WAN-
based POF network testbed includes four sites,
which are located in the Computer Network
Information Center (CNIC) of the Chinese Acad-
emy of Science (CAS), the Institute of Acoustics

(IOA) of CAS, the Huawei Institute of Research
and Development (Huawei R&D), and the Univer-
sity of Science and Technology of China (USTC),
respectively. The first three sites are in Beijing,
and the last one is located in Hefei.

Each site consists of a commercial POF hard-
ware switch (Huawei's NE40E-X3) and several
software-based POF switches, while they are all
managed by the POF controller located at USTC.
Among these sites, we have network connections
set up across the WAN with the virtual extensi-
ble LAN (VXLAN) tunnels, and the network band-
width among USTC, CNIC, and IOA achieves
up to 70 Mb/s through the China Education and
Research Network (CERNET). With this scheme,
the end users at different sites are transparent to
the WAN and can communicate as in a LAN.

By leveraging the VXLAN tunnels, the whole
WAN-based testbed can be considered as a pure
POF network, and thus network innovations such
as POF-based source routing can easily be real-
ized in this testbed. Moreover, the testbed can
use VXLAN to support dynamic virtual machine
(VM) migration seamlessly, and we describe our
experimental demonstration on WAN-based VM
migration in this section to further verify the flexi-
bility of POF.

It is known that VXLAN is widely used in
inter-data-center networks and can make geo-
graphically distributed VMs communicate as if
in the same LAN. Unfortunately, VXLAN has
not been supported by the latest OpenFlow
specification [5], which means that we cannot
realize it with OpenFlow without non-standard-
ized extensions. Meanwhile, most of the existing
VXLAN implementations in legacy networks use
static configuration, which limits network flexi-
bility and can hardly cooperate with a dynamic
network environment. On the other hand, with
the enhanced forwarding plane programmability
provided by POF, we can support VXLAN easily
and realize live VM migration across WAN in the
testbed. We program the POF switches at each
site, and use them to emulate the ingress/egress
switches of data centers to facilitate the function
of a virtual tunnel endpoint (VTEP). Specifically,
each inter-data-center packet is encapsulated with
a VXLAN header in the POF switches by perform-

FIGURE 5. Experimental results: a) Results on path setup latency; b) results on total number of flow entries.

Number of switches
(a)

3

50

0

Pa
th

 se
tu

p
lat

en
cy

 (m
s)

100

150

5 7 9

(b)

Traffic load (Erlangs)
2000

5k

0

To
ta

l n
um

be
r o

f f
lo

w
ta

bl
e

en
tri

es

10k

15k

20k

25k

4000 6000 8000 10000

POF-based source routing
OpenFlow-based source routing

w/ source routing
w/o source routing

IEEE Network • March/April 2017 19

ing the instructions from the controller, and a vir-
tual network identifier (VNI) is allocated to each
tenant. Then, based on the VMs' locations, the
POF controller can update the flow entries in the
switches to facilitate VM migration.

We experimentally demonstrate a live VM
migration between the USTC and CNIC sites.
Figure 6b illustrates the experimental scenario.
We migrate a 1 GB VM running Ubuntu OS
from USTC to CNIC. In order to evaluate the per-
formance of the VM migration, we let the VM
send a 2 Mb/s UDP packet flow to an end user
located in the USTC domain, and measure the
service downtime during which the end user can-
not receive the packets due to the VM migration
across the WAN. Figure 6c shows the experimen-
tal results on service downtime when we allocate
different bandwidth in the POF network testbed
to facilitate the VM migration.

Conclusion
This article discusses how to enhance the pro-
grammability of the forwarding plane in SDN with
POF. We first describe the working principle of
POF and elaborate on our efforts on enriching the
ecosystem of POF development. Then our design
and implementation of the POF-based source
routing are discussed, and we also elaborate on

the first WAN-based POF network testbed, which
includes POF switches located in two cities in
China.

Acknowledgments
This work was supported in part by the NSFC Proj-
ect 61371117, the Fundamental Research Funds
for the Central Universities (WK2100060010), the
Natural Science Research Project for Universities
in Anhui (KJ2014ZD38), and the Strategic Priority
Research Program of the CAS (XDA06011202).
The authors would also like to thank their col-
leagues from CAS and the Huawei institute of
Research and Development for their kind help on
the experiments.

References
[1] D. Kreutz et al., “Software-Defined Networking: A Compre-

hensive Survey,” Proc. IEEE, vol. 103, Jan. 2015, pp. 14–76.
[2] N. McKeown et al., “OpenFlow: Enabling Innovation in Cam-

pus Networks,” Comp. Commun. Rev., vol. 38, Feb. 2008,
pp. 69–74.

[3] N. Xue et al., “Demonstration of OpenFlow-Controlled Net-
work Orchestration for Adaptive SVC Video Manycast,” IEEE
Trans. Multimedia, vol. 17, Sept. 2015, pp. 1617–29.

[4] H. Song, “Protocol-Oblivious Forwarding: Unleash the Power
of SDN through a Future-Proof Forwarding Plane,” Proc.
ACM HotSDN 2013, Aug. 2013, pp. 127–32.

[5] P. Bosshart et al., “P4: Programming Protocol-independent
Packet Processors,” Comp. Commun. Rev., vol. 44, July
2014, pp. 87–95.

FIGURE 6. WAN-based POF network testbed in China: a) WAN-based POF network testbed in China; b) VM migration across WAN in
POF network testbed; c) results on service downtime due to VM migration across WAN.

172.16.1.x/24

Host 2 (192.168.3.12)

Provisioned bandwidth (Mbps)
(c)

(b)(a)

USTC

POF switch

POF controller

10.0.0.x/24Live VM migration

@Hefei

POF protocol

POF protocol

POF protocol

PO
F p

rot
oc

ol

POF protocol

VM3VM2

VM2

2010

20

0

Se
rv

ice
 d

ow
nt

im
e

(s
ec

on
ds

)

40

60

80

100

120

30 40 50 60 70

10.0.0.x/24

Host 1 (192.168.3.11)

CNIC

POF switch

172.16.1.x/24

@Beijing

VM3VM1

POF controller

WAN

WAN

IOA

CNIC Huawei R&D

USTC

POF switch

POF switch POF switch

Commercial POF switch

VXLAN tunnel

VXLAN tunnel VXLAN tunnel

VXLAN tunnel

Hefei

Beijing

POF switch

IEEE Network • March/April 201720

[6] Protocol Independent Forwarding, https://www.opennet-
working.org/protocol-independent-forwarding.

[7] J. Yu et al., “Forwarding Programming in Protocol-Oblivious
Instruction Set,” Proc. ICNP 2014, Oct. 2014, pp. 577–82.

[8] Protocol Oblivious Forwarding, http://www.poforwarding.org.
[9] B. Pfaff et al., “The Design and Implementation of Open

vSwitch,” Proc. NSDI 2015, May 2015, pp. 117–30.
[10] DPDK: Data Plane Development Kit, http://dpdk.org/.
[11] S. Jyothi, M. Dong, and P. Godfrey, “Towards a Flexible

Data Center Fabric with Source Routing,” Proc. ACM SOSR
2015, June 2015, pp. 10:1–10:8.

[12] S. Li et al., “Source Routing with Protocol-Oblivious For-
warding (POF) to Enable Efficient e-Health Data Transfers,”
Proc. ICC 2016, May 2016, pp. 1–6.

[13] EtherType, https://en.wikipedia.org/wiki/EtherType.
[14] D. Hu et al., “Design and Demonstration of SDN-Based

Flexible Flow Converging with Protocol-Oblivious Forward-
ing (POF),” Proc. GLOBECOM 2015, Dec. 2015, pp. 1–6.

[15] OpenFlow Switch Specification, v. 1.5.0, https://www.
opennetworking.org/images/stories/downloads/sdn-re-
sources/onf-specifications/openflow/openflow-switch-
v1.5.0.pdf.

Biographies
Shengru Li received his B.S. degree from the School of Infor-
mation Science and Engineering, Shenyang Ligong University
(SYLU), China, in 2013. Now he is working toward his Ph.D.
degree at the School of Information and Technology, University
of Science and Technology of China (USTC). His research inter-
ests include software-defined networking and network architec-
ture.

Daoyun Hu received his B.S. degree from the Department
of Information Science and Technology, Southwest Jiaotong
University (SWJTU), Chengdu, China, in 2014. He is working
toward his M.S. degree at the School of Information and Tech-
nology, USTC. His research interest is software-defined net-
working.

Wenjian Fang received his B.S. degree from the School of
Information Science and Technology, USTC in 2014. Now he is
working toward his M.S. degree at the same school at the same
university. His research interests include elastic optical networks,
data center networks, and software-defined networking.

Shoujiang Ma received his B.S. degree from the Department of
Information Science and Technology, SWJTU, Chengdu, China,
in 2013. He is working toward his M.S. degree at the School
of Information and Technology, USTC. His research interests
include software-defined networking and next generation net-
work architecture.

Cen Chen received his B.S. degree from the School of Electronic
Engineering, Xidian University, China, in 2013. Now he is work-
ing toward his M.S. degree at the School of Information and
Technology, USTC. His research interests include elastic optical
networks and software-defined networking.

Zuqing Zhu [M'07, SM'12] (zqzhu@ieee.org) received his
Ph.D. degree from the Department of Electrical and Computer
Engineering, University of California, Davis, in 2007. From July
2007 to January 2011, he worked in the Service Provider Tech-
nology Group of Cisco Systems, San Jose, California, as a senior
R&D engineer. In January 2011, he joined USTC, where current-
ly he is a full professor. He has published more than 160 papers
in peer-reviewed journals and conferences. He is an Editorial
Board member of IEEE Communications Magazine, the Journal
of Optical Switching and Networking (Elsevier), the Telecommu-
nication Systems Journal (Springer), Photonic Network Commu-
nications (Springer), and other publications. He received Best
Paper Awards from IEEE ICC 2013, IEEE GLOBECOM 2013,
ICNC 2014, and ICC 2015. He is a Senior Member of OSA.

