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Abstract
Software-defined networking separates the 

control and forwarding planes of a network 
to make it more programmable and applica-
tion-aware. As one of the initial implementations 
of SDN, OpenFlow abstracts a forwarding device 
as a flow table and realizes flow processing by 
applying the “match-and-act” principle. Howev-
er, the protocol-dependent nature of OpenFlow 
still limits the programmability of the forwarding 
plane. Hence, in this article, we discuss how to 
leverage protocol-oblivious forwarding (POF) 
to further enhance the network programmabil-
ity such that the forwarding plane becomes 
protocol-independent and can be dynamically 
reprogrammed to support new protocol stacks 
seamlessly. We first review the development of 
OpenFlow and explain the motivations for intro-
ducing POF. Then we explain the working prin-
ciple of POF, discuss our efforts on realizing the 
POF development ecosystem, and show our 
implementation of POF-based source routing as 
a novel use case. Finally, we elaborate on the first 
WAN-based POF network testbed that includes 
POF switches located in two cities in China.

Introduction
Over the past decade, the Internet's rapid devel-
opment has pushed the scales of end users, net-
working applications, and network elements to 
grow exponentially. Meanwhile, due to the com-
petitive tussle among different stakeholders, the 
network architecture has become more and more 
complicated, brought to “ossification.” Conse-
quently, the introduction of new protocols and 
services can be slowed down and even impeded. 
In response to these issues, software-defined net-
working (SDN) has emerged as a new paradigm 
to change how the Internet operates [1]. Specif-
ically, SDN separates the control and forwarding 
planes of a network, and leverages centralized 
network control and management (NC&M) to 
make it more programmable, flexible and applica-
tion-aware. Therefore, new networking protocols 
and services can easily be developed with the for-
warding plane abstraction provided by the control 
plane.

As one of the initial implementations of SDN, 
OpenFlow [2] provides a powerful tool set for 
network operators to program and manage their 
networks adaptively [3]. However, its protocol-de-
pendent nature still limits the programmability 
of the forwarding plane. Specifically, OpenFlow 

defines the matching fields in flow tables accord-
ing to existing network protocols (e.g., Ethernet 
and IP). Therefore, OpenFlow switches need to 
understand the protocol headers to parse pack-
ets and perform flow matching, which may cause 
serious compatibility issues when new protocols 
try to add or remove header fields. Hence, it is 
desirable that the network programmability can 
be further enhanced such that the forwarding 
plane is protocol-independent and can be dynam-
ically reprogrammed to support new protocol 
stacks seamlessly. Following this idea, recent stud-
ies have proposed a few new SDN technologies, 
such as protocol-oblivious forwarding (POF) [4] 
and programming protocol-independent packet 
processors (P4) [5]. The basic idea behind POF 
and P4 are similar, as they both try to decouple 
network protocols from packet forwarding and 
make the forwarding plane reconfigurable, pro-
grammable, and future-proof.

More specifically, POF introduces a proto-
col-independent instruction set, which allows a 
network operator to define the protocol stack 
and packet processing procedure in a much more 
flexible manner than that in the current Open-
Flow specifications, while P4 designs a high-level 
language to program an SDN switch more flexi-
bly for protocol innovations. As POF defines the 
southbound interface that can be treated as a 
promising enhanced version of OpenFlow, we 
consider it in this work and try to demonstrate 
that network innovations can easily be realized 
with it.

This article discusses how to enhance the pro-
grammability of forwarding plane in SDN with 
POF. We first review the development of Open-
Flow and explain the motivations for introduc-
ing POF. Then we discuss our efforts on realizing 
the POF development ecosystem, and show our 
implementation of POF-based source routing as a 
novel use case. Our work to build the first WAN-
based POF network testbed, which includes POF 
switches located in two cities in China, is also pre-
sented. Finally, we summarize the article.

Review of OpenFlow
Since its inception, OpenFlow has used a proto-
col-dependent forwarding plane. Specifically, the 
evolution of OpenFlow specification takes a reac-
tive approach instead of a proactive one, that is, 
all the matching fields and actions are defined 
based on existing protocols. This means that we 
have to update the matching fields and corre-
sponding actions constantly as it becomes more 
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widely deployed with the need to support more 
protocols. Hence, the numbers of actions and 
matching fields keep increasing with the evolution 
of OpenFlow specification; for example, the latest 
OpenFlow v1.5 has to support 44 matching fields 
and 19 actions, while the numbers in OpenFlow 
v1.0 were 12 and 10, respectively. Therefore, 
when we want to support a new network proto-
col with OpenFlow, we have to check whether 
it can leverage the existing matching fields and 
actions in the latest OpenFlow specification. If 
not, we have to extend the specification and wait 
for the new version to be standardized. Appar-
ently, this would inevitably make the OpenFlow 
specification more and more complicated, which 
would eventually restrict the innovation capabili-
ty of OpenFlow. Hence, to enhance OpenFlow, 
POF [4] and P4 [5] have been put forward to 
create a protocol-independent and vendor-ag-
nostic SDN environment. As both approaches 
have attracted intensive interest from the Open 
Networking Foundation (ONF), they are consid-
ered in ONF's project on protocol-independent 
forwarding (PIF) [6].

Protocol-Oblivious Forwarding
Overview of POF

Figure 1 shows the overview of POF. The network 
architecture in Fig. 1a indicates that POF also uses 
a centralized controller to manage the packet for-
warding in the switches. However, to make the 
forwarding plane protocol-independent, POF uses 
the forwarding procedure in Fig. 1b. Specifically, 
the packet parsing and flow matching in POF are 
based on a sequence of generic key assembly 
and table lookup instructions [4]. Hence, POF 
switches do not need to know the packet formats 
in advance. Actually, the search key of a matching 
field is defined as a tuple <offset, length>, where 
offset indicates the matching field's start bit loca-
tion in a packet, and length tells the field's length 
in bits. For instance, in Fig. 1b, the IPv4 Source 
Address field in an IPv4-over-Ethernet frame is 
denoted as <offset = 208 bits, length = 32 bits>.

POF also includes a generic flow instruction set 
(POF-FIS) to facilitate POF switches to parse, edit, 
and forward packets arbitrarily [7]. It is known 
that in OpenFlow, the instructions and actions 
are also protocol-dependent; for example, actions 
like push, pop, and set are all subject to a specific 
packet field. While with POF-FIS, all the instruc-
tions and actions become protocol-independent. 
Hence, for packet forwarding, all a POF switch 
needs to do is to extract the matching fields from 

packets based on certain tuples <offset, length>, 
perform flow table lookups, and then execute the 
associated instructions defined in POF-FIS.

On top of these innovations, POF defines four 
types of flow tables to enhance the programmabil-
ity of the forwarding plane, which are the masked-
match (MM) table, the longest-prefix-match (LPM) 
table, the extract-match (EM) table, and the direct 
table (DT). These types of tables occupy different 
memory sizes and can be searched with specific 
table lookup algorithms. Note that a flow entry 
in all the tables consists of both matching field(s) 
and related instruction(s), except for DT, whose 
flow entries only include instructions. By leverag-
ing these tables, the forwarding procedure in a 
POF switch can be abstracted as a data path pipe-
line. To handle the situation in which the switch 
needs to store the flow information temporarily, 
POF defines a metadata memory for each switch 
and introduces several metadata-related instruc-
tions.

Ecosystem of POF Development
We realize a simple ecosystem to facilitate the 
network innovations with POF:

Control Plane: We can realize a POF con-
troller by leveraging the existing open source 
platforms for OpenFlow controllers. Hence, we 
develop a POF controller by extending the POX 
platform. In addition, when the SDN networks 
are managed and operated by different operators, 
they need to deal with the inter-domain traffic 
flows. Even though POF specification has already 
defined the protocol for the interactions between 
the control and forwarding planes, the mecha-
nism and implementation for POF-based inter-do-
main operations still have not been addressed. 
Therefore, to fill in the missing puzzle piece, we 
design an inter-domain module (IDM) and include 
it in our POF controller. The IDM is realized with 
JavaScript Object Notation (JSON) and helps 
the domain managers (i.e., POF controllers) to 
exchange inter-domain information.

Figure 2a shows the inter-domain operation 
scheme of POF networks. Here, we design the 
IDM to exchange the information on network 
reachability, intra-domain network protocol, and 
so on among the controllers. Each controller 
abstracts its own domain as a “big switch” and 
generates a domain forwarding table to describe 
the connectivity among the domain and its neigh-
bors. The domain forwarding table will be broad-
cast to the controllers in neighbor domains when 
there is a change in the inter-domain topology. 
After collecting the domain forwarding tables 

FIGURE 1. Overview of POF: a) architecture of a POF-based network; b) packet forwarding procedure in POF.
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from all of its neighbors, each controller con-
structs a global virtual topology. Then, when an 
inter-domain traffic flow arrives, it can calculate 
and find the right next domain to forward the 
flow to. For the flows that require specified quality 
of service (QoS), the controller can also set up an 
end-to-end routing path across multiple domains 
by collaborating with other controllers. Specifical-
ly, to realize this feature, we define an inter-do-
main message to encode the flows' requests and 
also design the protocol for controller collabo-
ration. Figure 2b shows the packets captured 
between the IDMs for exchanging a domain for-

warding table and sending the inter-domain mes-
sage for end-to-end flow path setup, respectively.

Forwarding Plane: Similar to the case of 
OpenFlow, we need two types of switches (i.e., 
commercial and software-based ones) to realize 
the packet forwarding functionalities described 
earlier. Fortunately, network equipment vendors 
are in a joint force to design and implement POF. 
For instance, Huawei has partially supported POF 
with their router platforms (e.g., Huawei NE40E 
and NE5000E) and also published an open source 
prototype of a software-based POF switch online 
[8]. However, the commercial routers are pro-
hibitively expensive for academic research, while 
the open source software-based switch has per-
formance issues, that is, the packet forwarding 
throughput is very limited (i.e., below 200 Mb/s 
per port).

The major issue with the software-based POF 
switch prototype published in [8] is that it was 

FIGURE 2. POF control plane for multi-domain scenarios: a) POF inter-domain operation; b) Wireshark cap-
tures of control packets to/from IDMs in POF controllers.
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designed to move packets between the kernel 
space and user space of Linux too frequently, 
which makes the packets being handled in the 
switch go through a few time-consuming and 
unnecessary processes, including CPU inter-
rupt handling, user-space-to-kernel-space con-
text switching, and so on. Therefore, the long 
processing time limits the throughput of the 
software-based switch. We try to overcome this 
drawback by ensuring that the packet processing 
and forwarding in a software-based POF switch 
are all conducted in the user space of Linux [9]. 
Basically, we design and implement our own soft-
ware-based POF switch by leveraging the Intel 
data plane development kit (DPDK) [10] to for-
ward the packets received by a network interface 
card (NIC) directly to the packet processing/for-
warding module in the user space. Hence, they 
would experience much less latency and can 
adapt to the sophisticated processing in the for-
warding plane of POF. Figure 3a shows the archi-
tecture of our software-based POF switch, and it 
can be seen that the DPDK driver helps exchange 
packets between the Ethernet ports in a NIC and 
the POF packet processing/forwarding module in 
the user space.

To illustrate the performance improvement 
achieved by our design, we measure the pack-
et forwarding throughput of our software-based 
POF switch and compare it to that of the one 
published in [8] (i.e., without DPDK-based imple-
mentation). Figure 3b shows the experimental 

results. Here, we use an IXIA packet generator 
to pump 1 Gb/s packets to the two types of soft-
ware-based switches running on independent 
high-performance servers that are equipped with 
Gigabit Ethernet (GbE) NICs, and measure the 
received throughput at the outputs of the switch-
es. It can be seen that our software-based POF 
switch achieves much higher throughput and 
almost reaches the line rate of the GbE NICs. We 
then use the software-based switches to forward 
the packets for high-resolution video streaming 
and perform experiments to further verify the 
performance of our switch. Specifically, we emu-
late a network environment in which a 3.5 Mb/s 
video streaming packet flow needs to be forward-
ed together with 500 Mb/s background traffic 
(e.g., UDP packets). Figure 3c plots the luminance 
component's peak signal-to-noise ratios (Y-PSNR) 
of the received videos, which indicate that the 
quality of the video forwarded by our soft-
ware-based switch is much higher and more sta-
ble than that of the benchmark. This is because 
our software-based switch has much higher pack-
et processing/forwarding capacity and hence can 
make sure that all the video packets are handled 
in a timely and lossless manner even though there 
is 500 Mb/s background traffic.

Use Case: POF-Based Source Routing
With the ecosystem discussed above, we can real-
ize new network applications/operations more 
easily and efficiently. In this section, we show 

FIGURE 3. Design and performance of our software-based POF switch: a) architecture of our software-based POF switch with Intel 
DPDK; b) throughput comparison of software-based POF switches; and c) comparison on the Y-PSNR of received videos from dif-
ferent software-based POF switches.
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POF-based source routing as a use case.

Principle of Source Routing
It is known that since the inception of SDN, the 
scalability of flow table space has always been an 
important issue [1]. The issue is especially tricky 
when the SDN network needs to carry a huge 
volume of traffic from many flows (e.g., in a data 
center network). Basically, when the flow entries 
installed in the switches increase rapidly, they can 
exhaust the switches' ternary content addressable 
memory (TCAM) easily and degrade forwarding 
performance.

SDN-based source routing has been consid-
ered as a promising way to solve the scalability 
issue mentioned above [11]. Specifically, in each 
packet, source routing encapsulates a series of 
output ports in the header fields to represent 
the forwarding action on each hop along the 
routing path. Then, when the packet is forward-
ed along the routing path, each switch extracts 
and performs its designated forwarding action in 
sequence (i.e., popping out the header field that 
contains the designated output port for the cur-
rent hop and directing the packet accordingly). 
With this scheme, the authors of [11] discussed 
OpenFlow-based source routing, which encodes 
the output port sequence in one or more header 
fields supported by OpenFlow (e.g., VLAN header 
and multiprotocol label switching [MPLS] header). 
Then they showed that multiple flows can share 
the same flow table in a core switch if their des-
ignated forwarding actions at that switch use the 
same output port.

Note that this OpenFlow-based source rout-
ing scheme is still protocol-dependent, that is, the 
encoding of output ports has to reuse the head-
er fields of legacy protocols and thus cannot be 
adjusted adaptively. For instance, the lengths of 
the encoded fields are either fixed or at least rigid 
and can hardly adapt to the hop count of routing 
paths in an arbitrary network. In addition, because 
of the flow matching principle of OpenFlow, 
the volume of installed flow entries in each core 
switch is still proportional to the number of output 
ports on the switch. In the discussions below, we 
show the design of POF-based source routing, 
and verify that it is more flexible and time-effi-

cient, and the volume of installed flow entries can 
be reduced substantially.

Packet Design for POF-Based Source Routing
By using the protocol-independent feature 
of POF, we can realize source routing without 
reusing the header fields in legacy protocols 
[12]. Basically, we can tailor the packet fields to 
store the path information efficiently and enable 
effective source routing. Figure 4a describes the 
POF-based source routing packet format that we 
design in this work. For backward compatibility, 
we insert the source routing header between the 
Ethernet header and IP header. In order to iden-
tify source routing packets, we set the type field 
in the Ethernet header to 0x0908 to indicate that 
the Ethernet frame contains a POF-based source 
routing packet. Actually, this field can use another 
feasible value as long as it does not conflict with 
those defined for existing protocols [13].

The detailed descriptions on the fields includ-
ed in the source routing header are as follows:
1. The time-to-live (TTL) field occupies 8 bits 

and represents the number of remaining 
hops for the packet to travel to its destina-
tion in a POF network. Thus, the value of this 
field will be set at the ingress edge switch 
to the POF network and decreased by 1 on 
each hop in it. When the packet is about to 
leave the POF network, the egress switch 
will remove the source routing header by 
using the del-field instruction in POF-FIS.

2. The Port field contains 32 bits, and its value 
identifies an output port of a POF switch.

Note that we design this field according to the 
Port-ID field used for POF-enabled switches [14], 
which is 32 bits. However, considering the fact 
that a switch would normally have fewer than 256 
output ports, we can shorten the length of this 
field. This can easily be realized with either of the 
two following approaches.
•	 We keep the POF switch as it is, but shorten 

the Port field in source routing packets. Then 
we use padding bits to make the field 32 bits 
when it is being written into the metadata 
memory and matched to a switch port. Note 
that this can easily be realized with POF-
FIS, and thus we do not need to modify any 

FIGURE 4. POF-based source routing: a) the procedure used to process the flow table in core switches and packet header designed for 
source routing; b) the operation principle of POF-based source routing.
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codes in the software-based POF switch.
•	 We redesign the POF switch to use a shorter 

variable to define the Port-ID field, and then 
implement necessary changes in the POF 
controller.

Packet Forwarding with POF-Based Source Routing
Figure 4b describes the packet forwarding proce-
dure with POF-based source routing. For a traf-
fic flow, when its first packet arrives at an ingress 
switch to the POF network, the switch detects a 
flow table mismatch and sends a Packet-In mes-
sage to the controller. Then the controller calcu-
lates a routing path for the flow to traverse the 
POF network, determines the designated output 
port in the switch on each hop along the path, 
encodes the information in a Flow-Mod message, 
and sends it to the ingress switch. After receiving 
the Flow-Mod message, the ingress switch sets 
up a flow entry for the flow and stores the out-
put ports in its metadata memory. Then, for every 
packet of the flow, the ingress switch will convert 
it to the POF-based source routing format in Fig. 
4a and insert the output ports by using POF-FIS.

The intermediate core switches use our pro-
posed pipeline-like rule to process the POF-based 
source routing packets. Note that since we design 
the rule in such a way that it can be shared by 
all the POF-based source routing packets, we 
only need to install a small fixed number of flow 
entries (i.e., four) in each core switch in the POF 
network. Therefore, the volume of installed flow 
entries in the core switches can be reduced sub-
stantially. Moreover, since we encode the rout-
ing path in each packet, the core switches do not 
need to interact with the controller during the 
path setup, and thus the path setup latency can 
be reduced significantly too. Figure 4a explains 
the pipeline-like rule that we propose to process 
the POF-based source routing packets.

Before explaining the rule, we need to intro-
duce the following three types of notations to 
assist the description.
•	 <offset, length> represents a field that starts 

from the bit location offset in a packet or the 
metadata memory of a POF switch and con-
tains length bits.

•	 {offset, length} is the value of the field that is 
described by <offset, length> in a packet.

•	 [offset, length] is the value of the field that is 
described by <offset, length> in the metadata 
memory of a switch.
As shown in Fig. 4a, we leverage the forward-

ing plane programmability provided by POF to 
realize the pipeline-like source routing packet 
processing in core switches with three tables: 
two MM tables and one DT. Upon receiving a 
source routing packet, a core switch first passes 
it to Table 0 and uses it to check the type field in 
the Ethernet header, which is described by <96 
bits, 16 bits>. If the field's value equals 0x0908, 
the packet is a source routing one and should be 
sent to Table 1, which is a DT whose entry only 
includes an instruction. With Table 1, the core 
switch copies the value of field <120 bits, 32 bits> 
(i.e., the Port field that encodes the designated 
output port of this hop) to its metadata memo-
ry by executing the write-metadata-from-packet 
instruction. Finally, the packet reaches Table 2, 
which includes two entries to determine wheth-

er the switch is the packet's last hop in the POF 
network. Specifically, it checks the value of field 
<112 bits, 8 bits> (i.e., TTL). If the switch is the last 
hop (i.e., the packet's egress switch in the POF 
network), the value of its TTL field will be 1. The 
field will match the first entry in Table 2, and then 
the del-field instruction is invoked to remove the 
whole source routing header from the packet and 
restore the type field in the Ethernet header to 
its original value. Otherwise, the field will match 
the second entry in Table 2, and the switch only 
removes the leftmost Port field in the source rout-
ing header (i.e., the one represented by <offset 
= 120 bits, length =32 bits>) with the del-field 
instruction, decreases the TTL field by 1 with the 
calculate-field instruction, and forwards the pack-
et to the designated output port that has been 
stored in the metadata memory with the output 
instruction.

To this end, we can see that the packet for-
warding procedure in each POF switch works just 
like a software program, which verifies the for-
warding plane programmability provided by POF. 
Specifically, the processing with the three tables 
can be considered as the functions whose inputs 
and outputs are the fields in the source routing 
packets, while the metadata memory behaves like 
temporary variables to save necessary informa-
tion. The number of flow entries installed on each 
core switch for source routing is fixed at four, 
which is relatively small and does not increase 
with the number of output ports on switches any-
more. What is more promising is that as the pipe-
line-like packet processing in the core switches is 
applicable to all the source routing packets, the 
interactions between the control and forwarding 
planes are minimized. Hence, compared to the 
OpenFlow-based source routing in [11], our POF-
based scheme not only uses fewer flow entries 
but also reduces the communication overhead 
between the controller and switches.

Performance Evaluation
In order to further verify the proposed function-
ality and related benefits, we build an exper-
imental testbed to evaluate POF-based source 
routing. Specifically, we use chain topologies, and 
change the number of switches that are includ-
ed in the chain to observe the changes on the 
path setup latency. Here, each switch is realized 
by running our software-based POF switch on 
a standalone Linux server. Here, the path setup 
latency is measured by leveraging the Ping pro-
gram, and to emulate a real network situation, 
we also inject background traffic in the testbed. 
Figure 5a shows the results on path setup latency 
from the schemes with and without the proposed 
source routing scheme. It can be seen clearly that 
with the proposed source routing scheme, the 
path setup latency can be reduced significant-
ly and does not increase with the number of 
switches along the path. These advantages can 
be explained as follows. Basically, without source 
routing, the path of a flow can only be set up 
after the controller has configured all the switches 

We can see that the packet forwarding procedure in each POF switch works just like a software 
program, which verifies the forwarding plane programmability provided by POF.
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on it. Hence, the time spent on the interactions 
between the controller and switches becomes 
longer when there are more switches to config-
ure. However, our proposed scheme would not 
have this issue, since no matter how many hops 
the path contains, the controller only needs to 
configure the ingress switch to set it up and does 
not need to interact with other switches.

Another benefit of our proposed POF-based 
source routing is that compared to Open-
Flow-based routing, it uses fewer total flow table 
entries in the network. Figure 5b compares the 
total flow table entry usage with our POF-based 
source routing scheme and the OpenFlow-based 
benchmark. Here, the results are obtained by run-
ning simulations with a FatTree topology that con-
tains 16 end nodes. The dynamic traffic flows are 
generated between the end nodes with the Pois-
son traffic model and have an average duration 
of 10 s. We observe that compared to the Open-
Flow-based benchmark, our POF-based source 
routing scheme reduces the total flow table entry 
usage by 55–68 percent. More promisingly, with 
the increase of the traffic load, the advantage of 
our proposed scheme becomes more and more 
significant. This is because our POF-based source 
routing scheme only needs to install addition-
al flow table entries in the ingress switches to 
accommodate a new flow, and thus the numbers 
of used flow table entries on the core and aggre-
gation switches do not increase or have relation 
with the number of output ports.

WAN-Based POF Network Testbed in China
In addition to our lab-based network environ-
ment, we also realize the first wide-area network 
(WAN)-based POF network testbed that con-
nects both commercial and software-based POF 
switches located in two major cities in China (i.e., 
Beijing and Hefei). Basically, to make the POF 
networks practical, the ecosystem we developed 
should also be tested in real deployed networks, 
to verify their performance, functionality, and 
effectiveness. As shown in Fig. 6a, the WAN-
based POF network testbed includes four sites, 
which are located in the Computer Network 
Information Center (CNIC) of the Chinese Acad-
emy of Science (CAS), the Institute of Acoustics 

(IOA) of CAS, the Huawei Institute of Research 
and Development (Huawei R&D), and the Univer-
sity of Science and Technology of China (USTC), 
respectively. The first three sites are in Beijing, 
and the last one is located in Hefei.

Each site consists of a commercial POF hard-
ware switch (Huawei's NE40E-X3) and several 
software-based POF switches, while they are all 
managed by the POF controller located at USTC. 
Among these sites, we have network connections 
set up across the WAN with the virtual extensi-
ble LAN (VXLAN) tunnels, and the network band-
width among USTC, CNIC, and IOA achieves 
up to 70 Mb/s through the China Education and 
Research Network (CERNET). With this scheme, 
the end users at different sites are transparent to 
the WAN and can communicate as in a LAN.

By leveraging the VXLAN tunnels, the whole 
WAN-based testbed can be considered as a pure 
POF network, and thus network innovations such 
as POF-based source routing can easily be real-
ized in this testbed. Moreover, the testbed can 
use VXLAN to support dynamic virtual machine 
(VM) migration seamlessly, and we describe our 
experimental demonstration on WAN-based VM 
migration in this section to further verify the flexi-
bility of POF.

It is known that VXLAN is widely used in 
inter-data-center networks and can make geo-
graphically distributed VMs communicate as if 
in the same LAN. Unfortunately, VXLAN has 
not been supported by the latest OpenFlow 
specification [5], which means that we cannot 
realize it with OpenFlow without non-standard-
ized extensions. Meanwhile, most of the existing 
VXLAN implementations in legacy networks use 
static configuration, which limits network flexi-
bility and can hardly cooperate with a dynamic 
network environment. On the other hand, with 
the enhanced forwarding plane programmability 
provided by POF, we can support VXLAN easily 
and realize live VM migration across WAN in the 
testbed. We program the POF switches at each 
site, and use them to emulate the ingress/egress 
switches of data centers to facilitate the function 
of a virtual tunnel endpoint (VTEP). Specifically, 
each inter-data-center packet is encapsulated with 
a VXLAN header in the POF switches by perform-

FIGURE 5. Experimental results: a) Results on path setup latency; b) results on total number of flow entries.
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ing the instructions from the controller, and a vir-
tual network identifier (VNI) is allocated to each 
tenant. Then, based on the VMs' locations, the 
POF controller can update the flow entries in the 
switches to facilitate VM migration.

We experimentally demonstrate a live VM 
migration between the USTC and CNIC sites. 
Figure 6b illustrates the experimental scenario. 
We migrate a 1 GB VM running Ubuntu OS 
from USTC to CNIC. In order to evaluate the per-
formance of the VM migration, we let the VM 
send a 2 Mb/s UDP packet flow to an end user 
located in the USTC domain, and measure the 
service downtime during which the end user can-
not receive the packets due to the VM migration 
across the WAN. Figure 6c shows the experimen-
tal results on service downtime when we allocate 
different bandwidth in the POF network testbed 
to facilitate the VM migration.

Conclusion
This article discusses how to enhance the pro-
grammability of the forwarding plane in SDN with 
POF. We first describe the working principle of 
POF and elaborate on our efforts on enriching the 
ecosystem of POF development. Then our design 
and implementation of the POF-based source 
routing are discussed, and we also elaborate on 

the first WAN-based POF network testbed, which 
includes POF switches located in two cities in 
China.
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